

STANDARDS

- <u>CCSS</u>: RST.9-10.1, 2, 3, 4, 5, 7, 8, 10; RST.11-12.1, 2, 3, 4, 8, 10; SL.9-10.1, 6; SL.11-12.1, 6; HSN.Q.A.1; HSA. CED.A.1, 4
- NGSS: ESS 2.A, ESS 2.C, ESS 2.D, HS-LS2-2, HS-LS2-6
- <u>OLP</u>: 1.B.1, 1.C.1, 1.C.7, 1.C.8, 1.C.9, 1.C.11

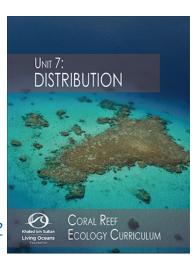
ONLINE CONTENTS

- <u>Distribution Quiz</u>
- Where Are Coral Reefs
 Found? Video Although corals
 are found throughout the
 planet, most reef-building
 corals are found in the
 tropics and subtropics where
 thousands of animals make
 these reefs their home.

DISTRIBUTION

This lesson is a part of the *Distribution* unit, which explains the two major drivers of coral distribution: salinity and temperature. Below is a summary of what is included in the entire unit.

UNIT CONTENTS


A. Background Information

- · Where are Corals Found?
- What is a Current?
- · What is Density?
- Salinity, Temperature, and Ocean Circulation

B. Lessons

Watch it! Where are Corals Found?

 A worksheet to accompany the <u>Where are Corals Found?</u> video

Density 101

· A lab to calculate and compare densities of liquids

Inquiring about Density 1

• A lab to create a procedure to determine relative densities

Inquiring about Density 2

A lab to create a procedure to determine actual densities

Go With the Flow

 A worksheet to accompany a teacher demonstration on how salinity and temperature affect water density

Read it! Galapagos Ocean Currents

 A worksheet to accompany the <u>Galapagos Ocean Currents</u> field blog

LESSON 2B INQUIRING ABOUT DENSITY Z

OBJECTIVE: Now that you know the *relative* densities of each solution (**Lesson 2A**), how can you be more precise in your comparison of the solutions' densities?

BRAINSTORMING IDEAS:

METHODOLOGY:

RESULTS: Once you have been given approval, test your methods and fill in the results in the table below.

Liquid	Density
Unknown 1	
Unknown 2	
Unknown 3	
Unknown 4	

CONCLUSIONS: Write your conclusions based on your results in the space below.

DRAW: Draw a diagram of how each of these solutions would look at a molecular level.

UNKNOWN 1	UNKNOWN 2	
UNKNOWN 3	UNKNOWN 4	
GINKNOWN 3	ONTRIVOWIN 4	
1. Were your results the same in Part 1 and Part 21	? If they were not, why do you think they were different?	
2. Would you do anything differently in Part 1?		

Would you do anything differently in Part 2?

Do you think it's important for scientists to use the same methodology? Why or why not?