

## **STANDARDS**

- <u>CCSS</u>: RST.9-10.1, 3, 4, 5, 7, 8, 9, 10; RST.11-12.1, 3, 4, 8, 9, 10; W.9-10.4, 7, 8; W.11-12.4, 7, 8; SL.9-10.1, 3, 6; SL.11-12.1, 3, 6
- **<u>NGSS</u>**: ESS 2.D, HS-LS2-6
- OLP: 1.B, 1.B.3, 5.A.2, 5.B.1, 5.B.2, 5.B.5, 5.C.25, 5.C.33, 5.C.34

### **ONLINE CONTENTS**

<u>Environmental Conditions</u>
 <u>Quiz</u>

## ENVIRONMENTAL CONDITIONS

This lesson is a part of the *Environmental Conditions* unit, which explains the abiotic factors that corals need to thrive. Below is a summary of what is included in the entire unit.

## **UNIT CONTENTS**

- A. Background Information
  - Environmental Conditions
  - Abiotic Factors
- B. Lessons

#### **Conditional Corals**

 A lab to evaluate the water quality at potential sites for a new coral reef colony

#### Deep Conditions

 A lesson to research deepwater corals and compare them to shallow-water corals

#### Read it! Shivering for Science

a Received and the second sec

ENVIRONMENTAL

CONDITIONS

UNIT 8

 A worksheet to accompany the <u>Shivering for Science</u> field blog





## LESSON 2

### **AUTHOR**

 Melinda Campbell, Khaled bin Sultan Living Oceans Foundation

#### LEARNING OBJECTIVE

• Compare and contrast shallow- and deep-water corals.

### **KEYWORDS**

- pH
- Salinity
- Substrate
- Temperature
- Turbidity

## MATERIALS

- NOAA lesson Deep Gardens (<u>https://oceanexplorer.noaa.gov/</u> <u>explorations/06davidson/background/</u> <u>edu/lessonplans.html</u>)
- Internet/library
- Lesson 2: Deep Conditions student
  worksheet
- Appendix A: Map

#### **EXTENSION**

 Students can compare and contrast the community of organisms that are found on and around shallow- and deep-water corals.

#### RESOURCE

 NOAA lesson Deep Gardens (<u>https://oceanexplorer.noaa.gov/</u> <u>explorations/06davidson/background/</u> <u>edu/lessonplans.html</u>)

#### **STANDARDS**

- <u>CCSS</u>: RST.9-10.4, 5; RST.11-12.4; W.9-10.4, 7, 8; W.11-12.4, 7, 8; SL.9-10.1; SL.11-12.1
- **NGSS**: HS-LS2-6
- **OLP**: 1.B, 1.B.3, 5.A.2, 5.B.1, 5.B.2, 5.C.33, 5.C.34

# TEACHER'S NOTES

### PROCEDURE

- 1. Teach Background Information Unit 8: Environmental Conditions.
- 2. Complete Deep Gardens lesson from NOAA (<u>https://oceanexplorer.noaa.gov/explorations/06davidson/background/edu/lessonplans.html</u>). NOTE: For Learning Procedure #2, use the Background Information of Unit 2: Classification and Unit 3: Coral Anatomy.
- 3. Hand out Lesson 2: Deep Conditions student worksheet.
- 4. Have students fill in the table. Further research may be necessary.
- 5. Discuss with students whether they think there are areas of the ocean that could support both shallow- and deepwater corals. Once most students have contributed, show **Appendix A: Map** and identify areas of deep-water corals that have been discovered near shallow-water corals.



**INSTRUCTIONS:** Fill in the table to compare shallow- and deep-water corals and then answer the questions below.

| Ideal Condition   | Shallow-water corals | Deep-water corals |
|-------------------|----------------------|-------------------|
| Light             |                      |                   |
| Depth             |                      |                   |
| Water temperature |                      |                   |
| Salinity          |                      |                   |
| Turbidity         |                      |                   |
| Nutrients         |                      |                   |
| рН                |                      |                   |
| Substrate         |                      |                   |
|                   |                      |                   |

1. Examine the information in the table above. Do you think there may be some areas of the ocean that could support both shallow- and deep-water corals at the same time? Why or why not?

2. How do the growth rates of the two types of corals compare to each other?



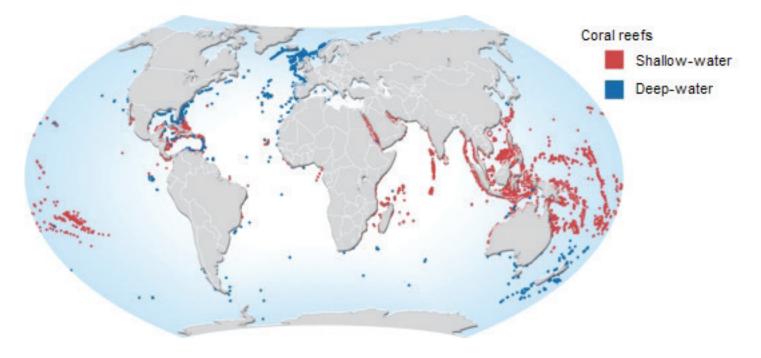
3. Why would you not find a shallow-water coral below 70 m depth?

4. Why do we know so much more about shallow-water corals than we do about deep-water corals?

5. List human-caused threats to each of the types of corals.

| Deep-water corals | Both | Shallow-water corals |
|-------------------|------|----------------------|
|                   |      |                      |
|                   |      |                      |
|                   |      |                      |
|                   |      |                      |
|                   |      |                      |
|                   |      |                      |
|                   |      |                      |
|                   |      |                      |




**INSTRUCTIONS:** Fill in the table to compare shallow- and deep-water corals and then answer the questions below.

| Ideal Condition   | Shallow-water corals | Deep-water corals                             |
|-------------------|----------------------|-----------------------------------------------|
| Light             | Moderate amount      | Little to none                                |
| Depth             | 30 m or less         | 50 m or more                                  |
| Water temperature | 16-34°C              | 4-13°C                                        |
| Salinity          | 23-42 ppt            | 32-39 ppt                                     |
| Turbidity         | Low                  | Low to moderate                               |
| Nutrients         | Low                  | High                                          |
| рН                | 8.0-8.3              | 7.4-7.9                                       |
| Substrate         | Hard                 | Prefer hard, but some species can handle soft |

- Examine the information in the table above. Do you think there may be some areas of the ocean that could support both shallow- and deep-water corals at the same time? Why or why not?
   Answers may vary. Remember that the parameters listed are general guidelines and there are often exceptions to the rule, so there are locations where shallow- and deep-water corals are found close to each other, like in Hawaii and Australia.
- How do the growth rates of the two types of corals compare to each other? Deep-water corals grow much slower than shallow-water corals (which grow slowly to begin with). This is due to the cold temperatures and the lack of light. Deep-water corals are often very long-lived, with scientists finding one colony that was over 4,000 years old. Shallow-water coral colonies may live for a few hundred years.

- 3. Why would you not find a shallow-water coral below 70 m depth? Shallow-water corals generally rely on zooxanthellae for most of their energy. Without enough light, the zooxanthellae cannot perform photosynthesis, so at these deep levels, there would not be enough energy produced to survive.
- 4. Why do we know so much more about shallow-water corals than we do about deep-water corals? Due to the lack of light, cold temperatures, and increased pressure, it is difficult to survey deep parts of the ocean for deep-water corals, while shallow-water corals are easily visited with a snorkel or SCUBA gear. Scientists have been exploring shallow-water coral reefs for over half a century, but are just starting to regularly survey areas where they think deep-water corals may exist.
- 5. List human-caused threats to each of the types of corals. Answers may vary, but might include the following:

| Deep-water corals | Both                                                     | Shallow-water corals |
|-------------------|----------------------------------------------------------|----------------------|
| Bottom trawling   | <ul><li>Global warming</li><li>Nutrient runoff</li></ul> | Direct contact       |
|                   |                                                          |                      |
|                   |                                                          |                      |



#### ATTRIBUTION Adapted from Hugo Ahlenius, UNEP/GRID-Arendal <u>https://www.grida.no/resources/7197</u>.

