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Empirical methods for estimating shallow-water bathymetry using passive multispectral
satellite imagery are robust and globally applicable, in theory, but they require copious
local measurements of water depth for algorithm calibration. Such calibration data
have historically been unavailable for most locations, but NASA’s Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2), a satellite-based LiDAR, might hold unique promise to
fill this critical data gap. Although ICESat-2 was not designed as a marine altimeter, its
ATLAS sensor consists of six green (532 nm) lasers that can penetrate a water surface
and return photons reflected by the seabed, thereby generating bathymetric profiles.
Utilizing TCarta’s NSF SBIR-funded Space-Based Laser Bathymetry Extraction Tool
and ICESat-2’s ATL03 geolocated photon data product, we have compared ICESat-2
bathymetric retrievals with a portfolio of soundings acquired in situ using a vessel-
mounted single-beam echosounder. This analysis demonstrated very high correlation
(R2 = 0.96) between the field and space-based bathymetry data. The comparisons
were made at multiple Caribbean and Pacific coral reef sites over water depths ranging
from 1 to 20 m. Results suggest that ICESat-2 could be an effective approach for
calibrating and validating empirical and radiative transfer methods, alike, for estimating
shallow-water bathymetry from remote sensing imagery, thereby enabling the immediate
potential for shallow-water bathymetric mapping of Earth’s reefs.

Keywords: satellite-derived bathymetry, SDB, ICESat-2, ATLAS, coral reef

INTRODUCTION

Accurate, high-resolution, continuous bathymetry is consistently emphasized as the most
important variable to support coastal-zone management. Coral reefs are no exception. Collecting
global-scale bathymetry using traditional technologies, namely sonar or airborne LiDAR, is
logistically challenging and prohibitively costly, however. For this reason, there has been a search
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for over 50 years for a robust and reproducible way to retrieve
bathymetry from satellite data (Ashphaq et al., 2021).

Ocean basin-scale bathymetry can be gathered by satellite
altimetry (Smith and Sandwell, 1997), but high-resolution
(meter-scale) data, particularly in shallow water, demands
different techniques. The three main approaches to shallow-
water bathymetry are ship-based acoustics, and active or passive
optics. Ship-based acoustic methods are robust, accurate, and
work in both deep and turbid water, but their coverage rates
are low relative to optical air- or space-borne systems. Active
optical systems use scanning lasers (LiDAR), except for a few
emerging technologies such as NASA’s Multispectral Imaging,
Detection, and Active Reflectance (MiDAR; Chirayath and Earle,
2016; Chirayath and Li, 2019) and airborne imaging spectroscopy
(Asner et al., 2020). Passive-optical systems collect imagery,
which can then be processed using a variety of techniques to
derive bathymetry. Of these three technologies, passive optical
systems are, as of today, the only ones which have been
deployed on spacecraft and are therefore the practical choice for
continuous, regional, or global-scale bathymetry measurements
over coral reefs.

Many methods have been developed to derive bathymetry
using passive optical systems. The techniques differ in the
details, but, generally speaking, the majority of published
techniques can be divided into either physically based or
empirical approaches (Purkis, 2018; Kutser et al., 2020). Physical
approaches use numerical models of the air-sea-seabed system.
Empirical models, by contrast, are fundamentally regression-
based. Empirical models are simpler to implement and more
robust to noisy data than physical based approaches, but they
also require extensive in situ water-depth data to tune the
regression to local conditions and are therefore harder to use
in a general way, say for regional or global mapping projects,
than the physical approaches. Other valid, but less frequently
used approaches to processing optical imagery include inferring
bathymetry based on wave patterns mapped with optical or radar
images (so called “wave kinematic” approaches; Abileah, 2013),
stereo photogrammetry, and Fluid Lensing (Chirayath, 2016).
Together, the full suite of approaches defines the domain of
satellite-derived bathymetry (SDB; Goodrich and Smith, 2020).

All SDB methods would benefit if it were easier, and/or
just less costly, to acquire independent bathymetric control
points for training and/or validation as part of the SDB process.
Empirical approaches to derive bathymetry from optical imagery
could be applied more broadly, either alone or as hybrid
techniques via combination with physical approaches. Physical,
wave kinematic, or photogrammetric techniques would each
benefit from better validation if copious directly measured
bathymetry were available. Traditionally, bathymetric control
points for SDB would most likely be acquired in situ with single
beam echo sounders (SBES). The Advanced Topographic Laser
Altimeter System (ATLAS) sensor aboard NASA’s Ice, Cloud, and
Land Elevation Satellite-2 (ICESat-2) has the potential to provide
global, georeferenced, high-density elevation measurements
appropriate for all of these uses and could, therefore, serve as
a source of remotely sensed bathymetric control points. ATLAS
uses 532 nm lasers to acquire six simultaneous ground tracks

with overlapping samples taken at 0.7 m spacing and a ∼17 m
diameter footprint (Martino et al., 2019).

The ICESat-2 science objectives are to quantify ice-sheet
elevation, sea-ice thickness, and terrestrial vegetation canopy
height (Neumann et al., 2019). Even though bathymetry is not an
official mission product, ATLAS’ green lasers have the potential
to penetrate water and were predicted to be able to return depth
measurements, based on simulations conducted prior to the
launch of the spacecraft (Forfinski-Sarkozi and Parrish, 2016,
2019; Forfinski-Sarkozi and Parrish, 2019; Li et al., 2019). This
capability was subsequently verified soon after launch (Parrish
et al., 2019) and is the motivation for this paper. ICESat-2/ATLAS
data are already being integrated into SDB workflows (Albright
and Glennie, 2020; Ma et al., 2020; Babbel et al., 2021; Thomas
et al., 2021), but a careful understanding of the accuracy of this
data source is key to realizing that objective.

Quantifying the accuracy of ICESat-2/ATLAS bathymetry is
a crucial step in building confidence in SDB products which
incorporate ICESat-2 data. This study complements and builds
forward from the handful of previous efforts to assess ICESat-2
bathymetry in several ways (Table 1). Except for Thomas et al.
(2021), earlier efforts used data from only one site in each study,
whereas this study incorporated data from nine different sites
displaying a broad range in water quality, benthic character, and
bathymetric complexity. Again, except for Thomas et al. (2021),
other efforts compared ICESat-2 against airborne LiDAR data,
but here we compare against single-beam sonar. Finally, other
quantitative assessments of accuracy were reported as only an
overall bias and root mean squared error (RMSE), but here we
investigate depth-dependent effects as well as the effects of seabed
factors, such as bottom type and roughness, on accuracy.

MATERIALS AND METHODS

Study Area and Field Data
Field data for this study were collected during the Khaled
bin Sultan Living Oceans Foundation’s (KSLOF) Global Reef
Expedition (GRE), which consisted of a global transect of
shallow-water coral reef sites conducted between 2006 and 2015.
As part of this effort, over 65,000 km2 of bathymetric and
benthic habitat maps were produced from WorldView-2 satellite
imagery fused with copious in situ data (Purkis et al., 2019).
The key GRE in situ data used for this project were soundings
collected by a research-grade single-beam echo sounder at each
of the survey sites.

The GRE mission visited > 1,000 sites in 15 separate countries.
Sites typically corresponded to individual atolls (e.g., Mangareva
or Raivavae, French Polynesia) or isolated flat-topped carbonate
platforms (e.g., Cay Sal, Bahamas or Ha’apai, Tonga). For the
purposes of this paper, we considered a “site” to be an area
that was mapped during the GRE as a single contiguous map
product (Figure 1). At each site, WorldView-2 and/or -3 satellite
imagery was mosaicked and processed with object-based image
analysis software to create a benthic habitat map and with a band-
ratio approach to create continuous bathymetric maps (Purkis
et al., 2019). Also, at each site, a small skiff outfitted with a
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TABLE 1 | Previous efforts to validate ICESat-2-bathymetry in comparison to this study.

References Sites Instrument Validation data source Bias (m) RMSE (m) Depth range (m)

Group A [1], [2] 1 MABEL LADS Mk II Topobathy Lidar −0.59 0.74 0 to 8

[3] 1 ATLAS EAARL-B bathymetric lidar −0.12 to 0.24 0.43 to 0.60 ∼ 0 to 30

[4] 1 ATLAS CZMIL Topobathy Lidar −0.10 to −0.11 0.20 to 0.34 0 to 8

This study 9 ATLAS Single-beam sonar depth variable 0.68 0 to 20

Group B [5] 1 MABEL LADS Mk II Topobathy Lidar 0.22 1.07 1 to 7

[4] 1 ATLAS CZMIL Topobathy Lidar 0.55 to 0.92 3.36 to 3.70 0 to 8

[6] 2* ATLAS Optech Aquarius Lidar depth variable 1.16 to 2.10 0 to 22

[7] 1 ATLAS Riegl VQ-820-G Lidar −0.38 to 0.42 0.96 to 1.54 N/A

[8] 3 ATLAS Gridded multisource and SBES −0.99 to 0.83 0.83 to 2.62 0 to 26

[9] 1 ATLAS Optech Aquarius Lidar not reported 1.08 ∼ 0 to 12

References column refers to: [1] Forfinski-Sarkozi and Parrish, 2016; [2] Forfinski and Parrish, 2016; [3] Parrish et al., 2019; [4] Albright and Glennie, 2020; [5] Forfinski-
Sarkozi and Parrish, 2019; [6] Ma et al., 2020; [7] Babbel et al., 2021; [8] Thomas et al., 2021, [9] Xu et al., 2021. The Multiple Altimeter Beam Experimental Lidar (MABEL)
is an airborne instrument used to simulate ATLAS data. Group A papers tested the MABEL/ATLAS bathymetry against validation data. Group B papers tested SDB
products created with MABEL/ATLAS bathymetric control points against validation data. (*) highlights that two sites were mapped in [6] but validation data were available
for only one of them. Note [1–3] and [6,9] used the same validation data sets.

FIGURE 1 | Locations of study sites are highlighted in panels (A–G), in red, as well as nearby geographic features. Extents of each panel (A–G) are shown in the top
panel. The GBB in panel D stands for “Great Bahama Bank.” North is top in all maps; scales as noted.

HydroBox HD hydrographic echo sounder collected bathymetric
transects. Over 30 million sonar soundings were collected in total
under the auspices of the GRE. Soundings were corrected for
the offset of the transducer below the waterline and ultimately
used to calibrate and validate the bathymetric maps which
were optically derived from satellite imagery using the multi-
regression approach developed by Kerr and Purkis (2018). Nine
GRE survey sites were chosen for this study (Figure 1). As
described below, for each of these sites, the GRE echosounder

data were quantitatively compared with the ICESat-2 LiDAR
bathymetry. The GRE habitat and satellite-derived bathymetric
maps were used to stratify this comparison in order to examine if
there were systematic biases by habitat or seabed roughness.

Ice, Cloud, and Land Elevation Satellite-2
Water Depths
First, ICESat-2 ATL03 geolocated photon data was acquired from
the NASA National Snow and Ice Data Center Distributed Active
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FIGURE 2 | SBL Tool GUI with delineated sea surface and refracted seafloor photon returns.

Archive Center (NSIDC DAAC) application programming
interface (API). For each GRE site, a polygonal area of interest
was submitted to the API via TCarta’s Space Based Laser
Bathymetry Extraction Tool software, which returned a set of
Hierarchical Data Format Files (HDF5) containing subset data
for each coincident ATL03 data granule.

Next, a pre-processing routine was applied to each ATL03
dataset, in which all photon measurements were converted from
ellipsoidal heights to orthometric heights using the EGM2008
geoid model and referenced to all necessary hierarchical metadata
including sensor geometry and incident angle.

To extract bathymetry measurements, each of the six
individual laser transects within the ATL03 datasets were
visualized in the Space Based Laser Bathymetry Extraction
Tool graphical user interface (GUI) and reviewed for evident
seafloor returns (Figure 2). Where viable bathymetry was found,
a clustering algorithm was applied to delineate sea surface
and seafloor photons. A Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm was used to
aggregate photon returns based on spatial density, whereby
photon clusters are constrained using maximum neighbor radius
and minimum cluster sample count parameters.

Within the ATL03 photon point cloud, the sea surface is
commonly resolved as tightly clustered photon returns with a
linear distribution across the entire transect of ATL03 data.
Therefore, the DBSCAN algorithm was passed a small radius
constraint, 0.05–0.1, depending on the specific dataset, and a

high minimum sample size, 500–1,000, again dependent on the
specific dataset. Once suitably delineated, the median sea surface
photon orthometric heights were stored for use in the refraction
calculation and relative water depth calculation, and excluded
from the dataset of photons submitted to seafloor delineation.

Seabed returns were also delineated with the DBSCAN
clustering algorithm. Although not as densely defined as the
sea surface, ATL03 seabed photon returns are relatively dense
compared to erroneous water column artifacts. With these
considerations in mind, radius constraints between 0.25 and
1.0 were used, with minimum sample counts between 2 and
10. A smaller radius and larger sample count will only cluster
clearly defined seafloor photons but may not include more sparse
seafloor photons. A larger radius and smaller sample count results
in more clustered seafloor photons, but also includes additional
erroneous returns which must be manually removed during
point cloud editing, following depth derivation. Once the seafloor
photons were sufficiently delineated, the seafloor photons were
submitted to a refraction algorithm.

The refraction algorithm was used to calculate the true
latitude, longitude and orthometric height, correcting for
the effects of light refraction through water, referencing the
methodology found in Parrish et al. (2019). This process employs
the median sea surface photon-orthometric height value, the
specific dataset sensor collection geometry, a refractive index
of 1.33 × 10−4 (Quan and Fry, 1995), and each seabed
photon’s apparent latitude, longitude and orthometric height
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TABLE 2 | Benthic habitat classes.

Number Zone Class name

1 F Shallow fore reef terrace

2 F Shallow fore reef slope

3 F Deep fore reef slope

4 F Fore reef sand flats

6 B Back reef rubble dominated

7 B Back reef sediment
dominated

8 B Back reef pavement

9 B Back reef coral framework

10 B Back reef coral bommies

12 L Lagoonal sediment apron
sediment dominated

13 L Lagoonal sediment apron
macroalgae on sediment

14 L Lagoonal floor barren

15 L Lagoonal floor macroalgae
on sediment

16 L Lagoonal pinnacle reefs
calcareous red-algal
conglomerate

17 L Lagoonal pinnacle reefs
massive coral dominated

19 L Lagoonal Acropora
framework

20 L Lagoonal patch reefs

21 L Lagoonal floor coral
bommies

22 L Lagoonal fringing reefs

23 Dense seagrass meadows

27 F Deep ocean water

28 L Deep lagoonal water

See Purkis et al. (2019) for detailed descriptions of each class. Number
corresponds to the label in Figure 5. Column 2 identifies geographic zone: forereef
(F), backreef (B) or lagoon (L).

to calculate the true, refracted position of each seabed photon.
Following refraction correction, a relative water column depth
for each refraction-corrected seafloor photon was determined
by calculating the difference between the photon’s refracted
orthometric height and the local sea surface median orthometric
height. To correct for the effect of ocean tides, all relative water
column depths were corrected to lowest astronomical tide (LAT)
datum using temporally specific tide height predictions derived
from ADMIRALTY TotalTide software. Finally, all data were
visualized in a three-dimensional point cloud environment and
any residual outlier depth measurements were removed.

Analyses
The first step was to associate ICESat-2 and in situ sounder
samples. For each ICESat-2 point, the single-beam echosounder
records were searched to find all echoes within 8.5 m, which
is the nominal radius of the ICESat-2 footprint. An ICESat-2
sample and the sonar echoes coincident within its footprint were
considered a matching pair, or “matchup.” Two metrics were
computed for each matchup: the mean depth of the sounder

points and the lag, defined as the mean distance to all the
matched sounder points.

The second step of analysis was to calculate the correlation
between sounder and ICESat-2 matchups. This was performed
with the Matlab (version R2020b) “fitlm” and “ttest” functions,
returning the slope, intercept, root mean squared error, and
R2 coefficient for a least squares fit, as well as mean, standard
deviation and 95% confidence interval for the distribution
of differences between the ICESat-2 and the sounder water
depths. Using ordinary least squares regression (OLS) to compare
sounder and ICESat-2 matchups had the potential to give
misleading correlations if the data were noisy or contained
outliers. Moreover, OLS tends to decrease the slope of the fitted
line as the correlation decreases (i.e., for lower R2 values), which
was undesirable since we wanted to see if the sounder and
ICESat-2 matchups fell on a 1:1 line. Thus, robust least squares
(RLS) and principal components based (PCA) regressions were
also computed using the Matlab “fitlm” and “pca” functions,
respectively. Regressions were computed using all three methods
for each site individually as well as for the entire dataset as a
whole, by pooling data from all sites.

The third step of analysis was to consider possible factors
affecting differences between ICESat-2 and sonar-depth
retrievals. Using the maps described above (Section “Study
Area and Field Data”), matchups were grouped by the habitat
where they were sampled (Table 2), as extracted from the
GRE benthic habitat maps and associated ground control.
Next, the depth variability around each ICESat-2 sample was
computed as the standard deviation of a 14 × 14 m window
around each point. Univariate plots illustrated the effects of
depth, habitat, and depth variability on the difference between
ICESat-2 and sonar-depth retrievals. We used a generalized
estimating equations (GEE) model to quantitatively assess the
combined effects of these factors. The GEE model estimated
the mean association between the error, computed as ICESat-2
minus sounder depth differences, and several attributes: the
depth of the measurement itself, the mean distance between
the two measurements, the roughness of the surrounding
seabed, and a binary variable indicating whether the two
measurements occurred in the same GRE habitat class. A GEE
model was utilized due to suspected correlation within same
geographic area and the correlation structure was chosen via
minimized quasi-information criteria (QIC; Pan, 2001). P-values
less than 0.05 were considered statistically significant and all
analyses were performed in R version 4.04 and the gee package
version 4.13-20.

Finally, we accommodated discrepancy in reported values
for the nominal ATLAS beam footprint diameter. Design
specifications were for <17.5 or 17.4 m (Markus et al., 2017;
Neumann et al., 2019). Early post-launch reports were <17 m
(Martino et al., 2019) or 17 m (Parrish et al., 2019; Albright
and Glennie, 2020). A recent paper and the current ICESat-2
technical specifications web page cite 13 m (Thomas et al., 2021).
Another recent paper uses 11 m (Babbel et al., 2021). Given
the variance in these values we conducted the entire analysis
described above using both 8.5 m and 6.5 m radii for matching
echoes to ICESat-2 data.
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TABLE 3 | The first 3 columns following the country and site names show the number of echo soundings, ICESat-2 depth retrievals, and matchups between the two by
site.

Country Site N sonar N ICESat-2 N matchup Med. Matchup

Bahamas Cay Sal Bank 1908173 946 177 60

Cook Islands Aitutaki 422936 1689 423 59

Fiji Fulaga 248631 319 59 60

French Polynesia Mangareva 1129072 133 30 50

French Polynesia Raivavae 563457 644 94 54

New Caledonia Ile de Pins 896919 659 107 50

New Caledonia Surprise 481507 439 92 71

Solomon Islands Gizo 286476 236 23 60

Tonga Ha’apai 914073 2929 568 45

Totals: 6851244 7994 1573

A matchup was defined as an ICESat-2 point with at least one sonar sounding within 8.5 m, which is the radius of the ICESat-2 footprint. The last column shows the
median number of soundings within each ICESat-2 footprint.

FIGURE 3 | Correlation between depths recorded by ICESat-2 and single beam sonar. Each sonar point on this plot is an average of all echoes located within 8.5 m
of the corresponding ICESat-2 return (N = 1573 matchups). Points shown in black contain unique combinations of sonar points in their average (N = 397). Points in
grey contain echoes that are also averaged in other matchups. Linear fit shown to the unique data only (black points; R2 = 0.96 and slope = 0.84) but the fit to all the
data has same R2 and slope = 0.83.

RESULTS

Over six million echo soundings and almost 8,000 ICESat-2 depth
retrievals were available at the nine sites used for this study. Of
these, 1,573 ICESat-2 records matched up with at least one sonar
sounding within its 17 m diameter footprint (Table 3). Overall,
the median number of soundings per matchup was 59. This was a
skewed distribution with 22 ICESat-2 records having only 1 sonar
sounding in their footprints and 1 ICESat-2 record having 819
sonar soundings in its footprint.

There was a high correlation between ICESat-2 and coincident
single-beam echo sounder depths when data were pooled across
all sites (slope = 0.83, R2 = 0.96, N = 1,573; Figure 3). Ice,
Cloud, and Land Elevation Satellite-2 has dense along-track
sampling, so many of the ICESat-2 measurements overlapped,
therefore many sonar soundings were within 8.5 m of more
than one ICESat-2 point. In other words, not all the matchups
were independent samples. Unique matchups were identified as
those with smallest average lag, producing a smaller dataset of
non-overlapping samples. There were no significant differences
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FIGURE 4 | Correlation between depths recorded by ICESat-2 and single-beam sonar at each site. Each sonar point on this plot is an average of all echoes located
within 8.5 m of the corresponding ICESat-2 return. The 1:1 line and robust least squares fits are plotted as well as the confidence interval of the RLS fit; see Table 3
for summary of fits to data.

between the correlations using all matchups as compared to the
“unique” matchups (slope = 0.83, R2 = 0.96, N = 397; Figure 3).
Overall, the sounder recorded slightly deeper depths than ICESat-
2. Mean ICESat-2 minus sonar depth (and 95% confidence
interval) was −0.36 m (−0.41 to −0.31 m) for the full set of
matchups and −0.23 m (−0.33 to −0.12 m) for the unique set.
Linear regression for both the full and unique sets of matchups
revealed a depth-dependent bias (slope < 1). Sonar depths were
deeper than ICESat-2 depths in shallow water and vice-versa
in deeper water.

High correlations between ICESat-2 and coincident single-
beam echo sounder depths were also found when data were
analyzed at each site separately (Figure 4 and Table 4). All the
sites had R2

≥ 0.92 for ordinary least squares fits except Gizo
(Solomon Islands) and Surprise (New Caledonia). Robust least
squares regression changed the R2 value by more than 0.02 at
only Gizo, Surprise, and Mangareva (French Polynesia; Table 4).
The slopes of the fits, as determined by OLS, RLS, and PCA
were very similar for all sites except Mangareva and Surprise
(Table 4). Mangareva and Surprise each had 2-3 outliers, which
were identified and removed by RLS fitting. Fulaga (Fiji) and
Surprise were the only sites with slopes greater than 1:1, although
the slope for Surprise dropped to 0.95 when accounting for the
outliers with RLS regression.

Average differences between ICESat-2 and sonar depth
measurements did vary among habitat type (Figure 5). The boxes
in Figure 5 define the interquartile range (range containing the

middle 50% of the values), with the horizontal line in the middle
of each box marking the median. Dashed lines extend ± 1.5 times
the interquartile range or to the maximum/minimum values,
whichever is less. Symbols (+) mark outliers, defined as values
>1.5 times the interquartile range outside the middle 50% of data.

Although different habitats exhibited different average
differences between ICESat-2 and sonar depths, it was difficult
to find systematic differences that could be ascribed to benthic
cover or seabed relief. The habitat classes with the largest
absolute differences between ICESat-2 and sonar depths did
not systematically vary in substrate, roughness, nor geographic
zone (Figures 5, 6 and Table 2). The class with the most positive
ICESat-2 – sonar difference was a low-relief sediment class (#12,
“Lagoonal sediment apron”). Classes with the third through fifth
most positive ICESat-2 – sonar difference, on the other hand,
were high relief reef (classes 10, 17, and 20). The class with the
second most positive ICESat-2 – sonar difference (#28) was
“deep lagoonal water” which means analysts making the habitat
maps could not identify the seabed type due to the water depth,
so the actual habitat in class 28 could have been several different
things. Of the four classes with most negative ICESat-2 – sonar
difference, two were in the forereef (classes 3, 4), two in the back
reef (classes 9, 6); two were low relief (4, 6), and two were high
relief (9, 3). In short, although there were average differences
among the matchups when grouped by habitat, there was no
obvious pattern to which seabed classes produced positive vs.
negative ICESat-2 – sonar difference.
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TABLE 4 | Summary of linear fits to data. OLS, RLS, and PCA are the slopes of fits to the data using ordinary least squares, robust least squares and principal
components analysis regression, respectively.

Site OLS RLS PCA OLS R2 RLS R2

Cay Sal Bank 0.93 0.93 0.94 0.96 0.96

Aitutaki 0.86 0.87 0.88 0.96 0.96

Fulaga 1.04 1.12 1.05 0.99 0.99

Mangareva 0.88 0.98 0.91 0.92 0.97

Raivavae 0.87 0.87 0.89 0.95 0.95

Ile de Pins 0.82 0.83 0.84 0.93 0.92

Surprise 1.35 0.95 1.57 0.81 0.95

Gizo 0.62 0.63 0.65 0.87 0.90

Ha’apai 0.78 0.79 0.79 0.97 0.98

Entire Dataset 0.83 0.85 0.85 0.96 0.98

R2 values are provided also for the ordinary and robust least squares. Note that the choice of method made hardly any difference except for Mangareva and Surprise, for
which robust least squares reduced the impact of 2–3 outliers.

FIGURE 5 | The difference between depths recorded by ICESat-2 and single beam sonar categorized by seabed habitat class. Boxplots show the median,
interquartile range, overall extent of data and outliers for each class; see text for details. Classes are sorted in this figure in order of decreasing median ICESat-2 –
sonar depth difference. Note lack of obvious patterns in classes with large positive or negative median values (Table 2 defines the class names).

The multivariate GEE model assessed combined effects of
depth, geolocation offset, seabed roughness, and habitat edges
on the difference between ICESat-2 and sounder measurements.
This model complemented the univariate results (Figures 5, 6)
by controlling for multiple factors simultaneously. Multiple
correlation structure settings were tested when developing
the GEE model. The exchangeable correlation specification
was chosen for the analysis because, of those that were
computationally feasible, it resulted in the lowest QIC. Three
of the four variables included in the model were found

statistically significantly correlated with the ICESat-2 – sonar
depth difference (Table 5). On average, the ICESat-2 – sonar
depth difference increased by 0.19 m (95% CI: 0.14, 0.23,
p-value < 0.001) for each 1 m increase of depth, decreased by
−0.03 m (95% CI: −0.05, −0.01, p-value: 0.012) for every 1 m
increase in average distance between the ICESat-2 center and
the matching sonar soundings, and decreased by −0.32 m (95%
CI: −0.61, −0.03, p-value 0.028) if the two measurements were
in different habitat classes. The ICESat-2 – sonar difference was
negatively correlated with seabed roughness, but this was not
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FIGURE 6 | The difference between depths recorded by ICESat-2 and single beam sonar plotted against the standard deviation of sonar depths in the
neighborhood around each point. Linear fit to these data plotted as a red line. Note, however, negative correspondence between the ICESat-2 – sonar difference
and seabed roughness was not found to be statistically significant in the multivariate GEE analysis (Table 5).

TABLE 5 | Generalized estimating equations (GEE) model results.

Parameter Coefficient 95% CI P

ICESat-2 Depth 0.19 0.14, 0.23 <0.001

Mean ICESat-2/sounder distance −0.03 −0.05, −0.01 0.012

Seabed roughness −0.40 −0.94, 0.14 0.144

Same habitat class −0.32 −0.61, −0.03 0.028

Three of the four parameters correlated against the ICESat-2 – sounder depth
difference were found significant with P < 0.05.

found statistically significant by the GEE model (Figure 6 and
Table 5).

Virtually no differences were obvious for any of these tests
regardless of whether the matchups were performed with an
8.5 m or 6.5 m ICESat-2 footprint radius. The linear regression
using all matchups within 6.5 m yielded a slope of 0.85
(R2 = 0.97, N = 1,221) and using only the “unique” matchups
within 6.5 m also gave a slope of 0.85 (R2 = 0.96, N = 398).
The plots of differences by roughness and habitat were also
essentially identical to the values using 8.5 m radius. In short,
the choice of ICESat-2 footprint size made no meaningful
difference to the results.

DISCUSSION

There was a high correlation between ICESat-2 and coincident
single-beam echo sounder depths (R2 = 0.96), and a low overall

mean difference (−0.36 m for the full dataset). There was also a
depth-dependent bias, however, manifested by a slope less than 1
overall, and at all sites except Fulaga, individually. Sonar depths
were deeper than ICESat-2 depths in shallow water and vice-versa
in deeper water (Figures 3, 4). What factors might be the cause of
this depth-dependent bias between the datasets? How do these
results fit in the context of others that have used ICESat-2 for
SDB?

One source of bias might be any factor affecting detection
of the seabed in the raw data. The raw signals recorded by
both ICESat-2 and single-beam sonars are both fundamentally
an intensity signal as a function of time. These waveforms must
be analyzed to detect the location of the seabed, a process
colloquially known as “bottom picking.” In the case of LiDAR
instruments, such as ICESat-2, the sea surface must also be
detected, but the process is conceptually the same. Bottom-
picking algorithms are automated, by the necessity to process
millions of signals efficiently, and, although generally robust, they
can be fallible. Seabed roughness, and backscattering elements
in the water column are factors that could affect bottom (or
sea surface) picking algorithms for both optical (LiDAR) and
acoustic signals. Seabed reflectance in the sense of color (for
optical signals) and impedance (for acoustic signals) is another
factor that can affect bottom-picking algorithms.

We did not have independent geophysical data such as bottom
impedance or optical albedo at the sites of the matchups, however,
we did have habitat data, which can be considered as a proxy for
both seabed albedo and impedance (Gleason et al., 2009, 2011).
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Habitats, almost by definition, vary in seabed reflectivity (color
and optical impedance), roughness, and often affect the color of
the overlying seawater (e.g., clear forereef vs. optically shallower
lagoon). Habitats, therefore, integrate these factors into coherent
units. Systematic differences between smooth, flat habitats (sand,
for instance, or pavement) and rugose or sloping ones (forereef
perhaps) would support the hypothesis that bottom pick was
a source of bias. Habitats did vary in their median ICESat-
2 – sounder depth differences (Figure 5). Also, the GEE model
detected a small edge effect, whereby matchups near a class
border had ICESat-2 – sonar depth difference 0.32 m less than
those sites not near a habitat edge, on average (Table 5). It makes
sense that measurements taken over different habitats would
have a larger absolute difference than those taken in the same
habitat. The edge effect did not explain the depth-dependent
bias in ICESat-2 – sonar depth difference, however, which was
still 0.19 m per m depth increase even when controlling for
habitat edge (Table 5). Moreover, as discussed in the results
section, above, the patterns of differences as grouped by habitat
did not suggest any obvious systematic effects; low- and high-
relief habitats had both positive and negative median ICESat-
2 – sounder depth differences, for example. This too was
reflected in the GEE model, which demonstrated that the negative
correlation between seabed roughness and ICESat-2 – sounder
depth difference was not statistically significant (Table 5).

Depth calculation could be another source of bias. Calculating
depths with echosounders requires converting time to distance
by knowing the speed of sound in seawater (c). Most single-
beam echo sounders, including the one used in this study,
assume a constant value of c, but, in reality, c varies as a
function of the temperature, pressure, and salinity of the water
body. An inaccurate value of c would therefore affect the slope
of sonar depths vs. ICESat-2 depths because the magnitude
of error increases linearly with depth. Systematically adjusting
sonar depths by an assumed error in c and recomputing
the regression of adjusted sonar depths vs. ICESat-2 depths
revealed that a ∼23% increase in c would result in a 1:1 slope.
This is an unrealistically large error, however. Near the ocean
surface, c varies by <3% over the range of salinity (34 – 36
h) and temperature (20 – 30◦C) relevant to the study areas
(Del Grosso, 1974).

To place this work in the context of other studies, it
is important to appreciate the distinction between validating
ICESat-2 bathymetric data itself as opposed to validating SDB
products which were derived using ICESat-2 data as bathymetric
control points (Table 1). The former is the subject of this paper
and a direct measure of ICESat-2 data quality whereas the latter
convolves ICESat-2 data quality with satellite data quality and
algorithmic limitations. Of course, it is the latter that ultimately
matters (how accurate is your map?), but both types of studies are
necessary in order to partition the error sources in a final map.

Babbel et al. (2021), for example, used the Stumpf et al. (2003)
algorithm, seeded with ICESat-2 bathymetric control points and
noted that the errors between their SDB and the airborne LiDAR
data that they used for validation varied among different zones of
their study site. They felt that environmental conditions within
their study site, such as spatially varying turbidity or seabed types

were likely causing spatial variation in SDB accuracy. Indeed,
it has long been recognized that dark habitat tends to come
out as artificially deep and light habitats as artificially shallow
when using the popular Stumpf et al. (2003) SDB bathymetry
algorithm (or others based on the same premise). The question is
whether these effects are wholly caused by algorithm limitations
or whether the ICESat-2 bathymetry itself suffers from errors
due to bottom brightness and/or water quality. The result that
ICESat-2-sonar differences were not systematically biased by
habitat or roughness (Table 5) is noteworthy because it suggests
that the problem observed by Babbel et al. (2021) is with the SDB
algorithm, not the ICESat-2 data. This means that the ICESat-2
data are unlikely to exacerbate the darkening problem of these
Stumpf-type SDB algorithms.

All of the other studies that have considered the accuracy of
ICESat-2 bathymetry (as opposed to SDB accuracy) compared
against airborne LiDAR (Table 1). None of these reported a
depth-dependent bias, which is consistent with TCarta internal
unpublished data (also compared against airborne LiDAR). On
the other hand, none of the other studies reported error as a
function of depth so we do not really know. Generally, other
studies have reported summary statistics such as RMSE and
overall mean bias. Our values for both of these are in line with
previous work (Table 1).

The only other study of ICESat-2 bathymetry to use SBES as
a validation data source was Thomas et al. (2021). They assessed
SDB seeded with ICESat-2 data rather than ICESat-2 bathymetry
itself and found depth-dependent bias indicating SDB was deeper
than SBES in shallow water and shallower in deeper water, which
is the opposite of what we found here (they had a slope of
1.24 vs. our slope of 0.83). Interestingly, Ma et al. (2020, their
Figure 11) also found depth-dependent bias when regressing SDB
onto airborne LiDAR (their slopes were in the range 1.18 to 1.26).

Sample size could be a factor. Thomas et al. (2021) had only 85
SBES points at one site as compared to over 1,500 points at nine
sites spanning two ocean basins in the present study. The other
two sites that Thomas et al. looked at used gridded bathymetry
as a validation source, not SBES echoes. Using a gridded digital
elevation model (DEM) as validation for SDB allows for many
more points of comparison, but also introduces problems because
the gridded DEM cell sizes tend to be much larger than the SDB
pixels. Nevertheless, it was noteworthy that the regressions of
ICESat-2 seeded SDB on gridded bathymetric DEM data were
much closer to 1:1 than the regressions of ICESat-2 seeded SDB
on single-beam echo sounder data itself (Thomas et al., 2021).
Note that SBES data, albeit acquired by many surveys over many
years, were the original source material that was interpolated to
create the gridded bathymetric DEM. This could indicate that
adding more points of comparison to our dataset would reduce
the observed depth-depended bias and bring the regression slope
closer to 1:1. The only way to test this would be to assemble an
even larger ICESat-2 vs. SBES dataset, a topic for future work.

Factors affecting spatial homogeneity of the transmitted and
received signal are another topic for future consideration. By
averaging all sonar echoes within a given radius (6.5 or 8.5 m)
we have made several approximations: That the intensity of the
laser incident on the sea surface is uniform across, and zero
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outside of, the illuminated area, that the detector within ATLAS
is also uniform across the width of the reflected beam, and that
environmental factors such as the sea surface and atmospheric
turbulence have not introduced spatial structure during beam
propagation. We did try several alternative methods of averaging
the echoes in the neighborhood of each ICESat-2 depth point,
using weighting schemes based on a gaussian model of a laser
pulse with 85% of its energy within a 24 µR cone (Martino
et al., 2019). None of these efforts changed any of the results
presented above, however. Revisiting our results with a full
accounting of the optics of the ATLAS sensor and modeled
environmental propagation would be welcome as part of a truly
comprehensive ICESat-2 data quality control and validation
process. Nevertheless, we feel the magnitude of corrections that
might arise from such an assessment are unlikely to make major
changes to our observations or conclusions.

The explanation for depth dependent bias between ICESat-
2 and single-beam echo sounder data may be resolved in the
future with more data or accommodated, if needed, with a
correction. The more important point in the short term, however,
is that the overall mean bias and RMS errors in this study were
consistent with the values observed in a handful of earlier studies
but were also documented across many more sites including, in
particular, over coral reef sites. In addition, we have documented
a lack of systematic bias in ICESat-2 bathymetric retrievals
as a function of seabed type or roughness. Together these
observations support the growing consensus that ICESat-2 may
alleviate the hobbling need that empirical SDB algorithms have
for in situ bathymetric control points, thereby opening the vista
for global coastal bathymetry.
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