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temperature, protected status, market gravity, and geomor-
phological zones retained high importance across all models, 
their ability to predict each diver measurement varied, high-
lighting the complex determinants of the different aspects 
of reef health. To quantify the performance of our approach 
for a variety of sampling scenarios, we constructed separate 
models for lagoonal reefs versus forereef stations, and for 
‘archipelago,’ ‘region,’ and ‘basin’ spatial scales. Despite 
maintaining high accuracy (MSPE < 0.38), the socio-envi-
ronmental drivers that delivered the best models varied 
between reef zones and spatial scale. While we demonstrated 
high accuracy in predicting metrics coral reef health, our 
findings caution against one-size-fits-all interpretation of the 
drivers, so we suggest testing remote sensing models across 
geomorphological zones and scale to understand systematic 
changes in the variables that drive reef condition. Our study 
paves the way for an amplified role of remote sensing to 
inform reef conservation at multiple scales.

Keywords  Coral reef condition · Remote sensing · 
Random forest modelling · South Pacific

Introduction

Coral reef health is declining at an alarming rate (Hughes 
et al. 2017, 2018a; Stuart-Smith et al. 2018; Williams and 
Graham 2019). Mounting an effective response to this reef 
crisis benefits from the assessment of reefs via simple health 
indicators that can be swiftly measured by divers. The most 
common indicator of reef condition is the proportional cover 
of the seabed by live coral, which is fundamental to reef 
accretion and for maintenance of the three-dimensional 
structure that provides habitat for many species (Graham and 
Nash 2013; Perry et al. 2013). Consequently, the precipitous 

Abstract  Diver assessments can reveal much about coral 
reef condition, but fieldwork is expensive and challenging. 
To address this limitation to effective reef assessment, we 
identified predictive relationships between diver measure-
ments of reef condition collected at 650 stations across the 
South Pacific and a broad portfolio of socio-environmental 
drivers assembled from public-domain remote sensing data. 
Our models of coral cover, coral diversity, fish biomass, 
and fleshy macroalgae cover performed with relatively high 
accuracy (mean-squared prediction error, MSPE = 0.35–
0.48), implying that the state of the art for public-domain 
remote sensing is already well poised to extrapolate diver 
measurements to unsurveyed reefs. Whereas sea surface 
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demise of coral cover from a range of stressors including 
bleaching, disease, and declining water quality has been 
widely documented as a major concern (Gardner et al. 2003; 
Bruno and Selig 2007; De’ath et al. 2012). The diversity of 
coral species serves as a supplementary indicator of reef 
condition as high coral cover alone is not always indicative 
of a healthy reef. Rather, reefs can maintain relatively high 
cover while switching to dominance by a small number of 
species, like ‘weedy’ corals, dampening overall reef resil-
ience (Keck et al. 2005; Purkis and Riegl 2005; Green et al. 
2008; Hughes et al. 2012; Tanner 2017; Toth et al. 2019). 
Two additional widely used indicators are the biomass of 
reef-associated fish and macroalgal cover. Marine fisheries 
provide a major source of protein and economic opportu-
nity, especially for small island developing states (Allison 
et al. 2009). Thus, overfishing not only threatens food and 
job security for those billions of people (Burke et al. 2011; 
Barange et al. 2014), but also has been linked to a decline in 
overall reef health (Newman et al. 2006; Mora et al. 2011), 
as reef fish serve important ecological roles. For example, 
herbivorous fish control macroalgal growth (Adjeroud et al. 
2018) and limit shifts to macroalgae-dominated reefs, which 
are typical of degraded reef ecosystems (McManus and 
Polsenberg 2004; Mumby et al. 2007). Additionally, when 
the reef is overgrown with macroalgae, coral recruitment and 
survival are compromised (Graham et al. 2015). Healthy, 
undisturbed reefs are generally characterized by high values 
of hard coral cover, coral diversity, and fish biomass, cou-
pled with low macroalgae cover (Sandin et al. 2008).

These four diver-measured indicators also underlie the 
most widely adopted reef monitoring programs, such as the 
Atlantic and Gulf Rapid Reef Assessment (AGRRA), Reef 
Check, the Healthy Reefs Initiative, NOAA’s National Coral 
Reef Monitoring Program, the AIMS Long-term Monitor-
ing Program, and the Global Coral Reef Monitoring Net-
work (Halford and Thompson 1996; Wilkinson et al. 1997; 
Hodgson 1999; McField and Kramer 2007; Lang et al. 2010; 
Towle et al. 2021). They are also central to considerations 
of metrics of coral reef resilience (e.g., Obura and Grims-
ditch 2009; McClanahan et al. 2012; Maynard et al. 2015; 
Lam et al. 2017). The ability to map these indicators at large 
scales, bypassing the challenges of field surveys, would fur-
ther promote their worth for implementing global reef man-
agement. Given the ecological importance and widespread 
use of reef indicators, we adopted live coral cover and coral 
diversity, fish biomass, and fleshy macroalgae cover for this 
study, and hereafter refer to them as our four ‘ecosystem 
metrics.’

Our motivation for this work was predicated on the fact 
that it is logistically and financially impractical for large-
scale monitoring of reefs to be solely built on data collected 
by divers. Remotely sensed imagery from a range of air-
borne sensors and satellites provides a key tool to observe 

ecosystems at large scales (Hedley et al. 2016; Purkis 2018; 
Purkis and Chirayath 2022) and to extrapolate point data 
collected by divers across entire seascapes. We consider our 
work timely considering the growing repositories of high-
resolution remotely sensed data available for shallow marine 
ecosystems (Sbrocco and Barber 2013; Yeager et al. 2017; 
Gove et al. 2019; Asner et al. 2020, 2022; Smallhorn-West 
et al. 2020b; Roelfsema et al. 2021). We tested the hypothe-
sis that systematic relationships existed between diver meas-
urements of the four ecosystem metrics and public-domain 
remote sensing data. If these relationships could be mod-
elled, a small number of diver surveys could potentially be 
extrapolated to unsampled locations, via open-source remote 
sensing, to create continuous and inexpensive maps of coral 
cover and coral diversity, fish biomass, and fleshy macroal-
gae cover for marine spatial planning at scale.

Our work builds forward from a rich portfolio of stud-
ies using remote sensing to model the biology of reefs. For 
instance, coral cover has been successfully correlated with 
remotely sensed variables (Zinke et al. 2018; Vercammen 
et al. 2019; Asner et al. 2020; Smallhorn-West et al. 2020a), 
as has coral diversity (Pittman et al. 2009; Knudby et al. 
2013), reef fish richness and abundance (Purkis et al. 2008; 
Pittman and Brown 2011; Cinner et al. 2016; Harborne et al. 
2018; Darling et al. 2019), and macroalgal cover (Kotta et al. 
2013). Furthermore, coral cover modelled from remote sens-
ing has already been used to guide designation of marine 
reserves in Tonga (Smallhorn-West et al. 2020c).

Most of these studies, however, have focused on a single 
property of the ecosystem. As a result, literature examples 
that use remote sensing to model multiple ecosystem metrics 
from the same set of satellite data are limited. One excep-
tion, however, is Jouffray et al. (2019) who modelled reef 
regimes, defined by varying benthic cover and fish biomass, 
and found that each regime was best predicted by different 
drivers. By extension, it is logical to assume that the driv-
ers needed to successfully model a single ecosystem metric, 
such as coral cover, might also change across natural and 
anthropogenic gradients, and across spatial scale (Connolly 
et al. 2005; Williams et al. 2015a; Smith et al. 2016). It is 
well known, for instance, that a coral community situated 
in a restricted lagoon is ecologically different to one on an 
exposed forereef (Riegl et al. 2012; Maggioni et al. 2021). 
Ignoring this variability risks presenting managers with 
inappropriate models for reefs unique to their jurisdiction. 
Hence, there is a need to further examine the best approach 
for linking remote sensing to ecosystem metrics.

Here, we collate our field data collected with the Khaled 
bin Sultan Living Oceans Foundation, under the auspices 
of the Global Reef Expedition (hereafter ‘KSLOF-GRE’), 
which possibly accomplished the most comprehensive sur-
vey of Earth’s reefs so far achieved. We visited a global 
transect of > 1000 remote, shallow-water tropical reefs 
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distributed through the Atlantic, Pacific, and Indian Oceans, 
and their associated seas. Our expedition deployed stand-
ardized diver surveys to measure reef condition, coupled 
with habitat mapping from satellite and aircraft (Purkis et al. 
2019). We only considered diver stations in a South Pacific 
subset of the global KSLOF-GRE field data to avoid con-
volving data from reefs in the Pacific with those from the 
Atlantic and Indian Oceans, which are ecologically different 
(e.g. Roff and Mumby 2012). However, our Pacific-wide 
study is sufficiently large (50 million km2) to comprise sev-
eral bioregions and span pronounced gradients in marine 
biodiversity, anthropogenic stress, and climatological vari-
ability (Gove et al. 2013, 2016; Beger et al. 2020), giving 
us an opportunity to test the systematic variation of using 
remotely sensed variables to predict ecosystem condition.

Our first aim was to identify model efficacy and corre-
lations between each of the reef assessments made in the 
field with remote sensing drivers through a regression-based 
modelling technique capable of extrapolating predictions 
to new areas. Rather than modelling metre-scale benthic 
and fish assemblages across a small reef area (e.g., a sin-
gle atoll), our aim was to estimate reef condition across the 
South Pacific at the scale of satellite pixels from state-of-
the-art remote sensing products. This means using relatively 
coarse data layers compared to traditional studies of assem-
blage structure. However, if successful, this research will 
be a prelude to broadly estimating reef health from orbit. 
Our second aim was to examine changes in drivers on reefs 
inside lagoons versus on forereefs and for field observations 

aggregated at local versus basin-scales. Our motivation was 
to inform on the best practices of modelling reef condition 
and to examine whether interpretation of model relation-
ships was applicable to new seascapes and regions outside 
of the Pacific.

Methods

Study area

To gather the field-measured ecosystem metrics neces-
sary for this study, diver observations were made at 650 
stations distributed across the South Pacific—Palau, the 
Solomon and Cook Islands, New Caledonia, Fiji, Tonga, 
and French Polynesia (Fig. 1). Each station was comprised 
of a minimum of four replicate benthic and fish transects. 
Of our 650 stations, 250 were located on lagoonal reefs and 
400 on forereefs. The field data were collected over four 
years. Through 2012 and 2013, four archipelagos in French 
Polynesia—Society, Austral, Tuamotu, and Gambier—were 
surveyed, delivering a total of 259 stations (Fig. 1g–j). Simi-
larly accomplished in 2013 were the Cook Islands, Tonga, 
Fiji, and New Caledonia, delivering 30, 60, 70, and 75 diver 
stations, respectively (Fig. 1c–f). In 2014, the KSLOF-GRE 
surveyed 69 stations in the Solomon Islands (Fig. 1b), and 
in the following year, 87 stations were surveyed in Palau 
(Fig. 1a).

Fig. 1   Maps show the distribution of the 650 KSLOF-GRE field sta-
tions in each of seven South Pacific countries—a Palau, b the Solo-
mon Islands, c New Caledonia, d Fiji, e Tonga, f the Cook Islands, 

and the g Society, h Austral, i Tuamotu, and j Gambier French Poly-
nesian archipelagos. Dive stations colour-coded by archipelago. 
These colours are maintained for all figures to ease cross-comparison
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All our considered reefs had, to one extent or another, 
endured some form of disturbance prior to our visits. The 
reefs of French Polynesia, for instance, had suffered five 
mass bleaching events—1991, 1994, 1998, 2002, and 2007 
(Mumby et al. 2001; Pratchett et al. 2013; Adjeroud et al. 
2018). In addition to bleaching, the reefs of the Society and 
Austral Archipelagos had also been damaged by outbreaks of 
crown-of-thorn starfish between 2006 and 2009 (Kayal et al. 
2012; Timmers et al. 2012; Yasuda et al. 2015). Cyclone 
Erica devastated New Caledonia in 2003 (Guillemot et al. 
2010), and the reefs of Tonga were impacted by a tsunami 
in 2009 (Clark et al. 2011). Our east-to-west fieldwork from 
French Polynesia to the Solomon Islands was completed 
prior to the 2015–2017 mass coral bleaching which impacted 
reefs globally (Hughes et al. 2018a; Eakin et al. 2019) and 
Palau was completed in January 2015, a few months ahead 
of that pan-tropical bleaching event (Hughes et al. 2017). At 
the time that they were surveyed, none of our stations had 
experienced degree heating week values above the bleaching 
threshold since at least 2010.

Despite its expansive reefs and the economies built upon 
them, reef management at the scale of the South Pacific is 
modest. According to the Protected Planet database (www.​
prote​ctedp​lanet.​net), 8% of this area is designated as marine 
protected areas, hereafter ‘MPAs,’ and only 4% is designated 
as no-take fishing reserves. MPAs encompassing reefs in our 
considered countries were similarly scant. Of our 650 field 
stations, at the time they were surveyed, only 182 were situ-
ated within MPAs (disproportionately, 161 of those were in 
Palau and New Caledonia) and only 35 of the 182 stations 
were specified as no-take reserves. We considered the varied 
disturbance histories of our field stations and their disparate 
protected status as an important aspect of this study. These 
gradients allow the efficacy of our models to be tested for a 
wide range of disturbance and management conditions (e.g., 
widely varying coral cover and fish biomass), thereby maxi-
mizing the chance that our findings are relevant to other sites 
in the Pacific and beyond.

Ecosystem metrics from field data

At each of the 650 field stations, all four ecosystem metrics 
were derived from diver data extracted from four replicates 
of either 10-m-long benthic or 30-m-long fish transects 
at five water depths (< 8 m, 8–13 m, 14–18 m, 19–25 m, 
and > 25 m). For each benthic transect, divers quantified 
the percentage occupancy of live coral and macroalgae via 
point-intercept surveys. This technique required the surveyor 
to place a 10-m transect line on the seabed and record organ-
isms and substrate type at every 10-cm mark for a total of 
100 points per transect. However, in the rare cases where 
dive duration prevented a transect being completed, 1-m2 
photoquadrats were taken every metre along the transect and 

these photographs were manually digitized to extract benthic 
cover. In these cases, 50 points were randomly overlaid on 
each photograph and benthic and substrate type were identi-
fied under the points. Regardless of survey technique, corals 
were identified to the level of genera and algae were classi-
fied into six functional groups (fleshy macroalgae, crustose 
coralline algae, erect coralline algae, sediment-dominated 
turf, turf, and cyanobacteria). We used all coral genera to 
represent our coral cover ecosystem metric. Of the six total 
functional groups of macroalgae recorded by the divers, we 
only used the percent cover of fleshy macroalgae for our 
second benthic ecosystem metric. Per transect, coral diver-
sity was quantified using the Simpson’s diversity index, D, 
written as

where n is the total number of corals of a particular genus, 
and N is the total number of corals of all genera. Simpson’s 
index, like the Shannon-Wiener index, marries richness and 
evenness into a single metric (Simpson 1949). We opted 
for Simpson’s index because it gives more weight to domi-
nant species, which more accurately represented our South 
Pacific dataset, where few coral species tended to dominate 
the benthos. Simpson’s diversity of coral genera served as 
our third benthic ecosystem metric.

Fish observations were also comprised of a minimum 
of four replicate belt transects at the five water depths. We 
surveyed reef fish assemblages following a visual census 
technique modified from English et al. (1997) conducted 
over a 15-min duration along 30-m-long, 2-m-wide belt tran-
sects. Cryptic fishes and fishes < 5 cm were excluded from 
the counts. Each fish was identified to the level of species, 
and size was visually estimated. Fish biomass was then com-
puted using the formula

Here W is the weight of each fish in grams, L is the length of 
the fish in cm, and a and b are species-specific growth con-
stants derived from the length-weight relationships (Bohn-
sack and Bannerot 1986; Kulbicki et al. 1993).

Replicate transects across the depths present at each sta-
tion delivered a total dataset consisting of 4442 benthic tran-
sects and 4289 fish counts. To assimilate the field data into 
a form suitable for comparison with remote sensing driv-
ers, the replicate transects were averaged within each depth 
class and then averaged across the depths at which they were 
collected to yield a single measurement of each ecosystem 
metric at the 650 diver stations. The purpose for averaging in 
this way was twofold. First, our drivers from remote sensing 
were limited by their coarse spatial resolutions varying from 
tens to hundreds of metres, with the result that each remote 
sensing pixel invariably spans a wide range of water depth. 

(1)D = 1−Σ(n∕N)2

(2)W = aLb

http://www.protectedplanet.net
http://www.protectedplanet.net
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The second motivation for averaging the field data across 
depth was to build an approach that would be applicable 
to new field locations, which avoids rendering this model 
obsolete. Field data from other sources are likely collected 
following different protocols (e.g., AGRRA surveys exclude 
our two depth classes > 19 m), which will yield sparse, miss-
ing, or surplus depths compared to the field surveys that we 
used to construct our models. We deemed this averaging 
technique to be more robust and relevant for predicting eco-
system metrics in other ocean basins for future use.

Socio‑environmental drivers from remote sensing data

We derived 45 ‘socio-environmental drivers’ from public-
domain remote sensing products, 28 of which we kept after 
removing drivers due to multicollinearity (Table 1). To the 
best of our knowledge, our original list of 45 socio-envi-
ronmental drivers is exhaustive in terms of the open-source 
remote sensing data that are globally available and poten-
tially relevant to coral reef health. While retaining all 45 
variables did not change model performance, our motivation 
for discarding correlated variables was to ensure that they 
did not hinder the ranking of relative driver importance in 
each model, thereby simplifying interpretation of results. 
Continuous variables were assessed for multicollinearity 
with a correlation matrix and selected for removal based on 
predetermined thresholds (VIF > 7 and/or R2 > 0.8; Supple-
mentary Fig. 1). Assessing multicollinearity among categor-
ical variables was completed by running chi-square (χ2) tests 
between each pair of variables and removing those which 
had test statistics exceeding the χ2 critical value of p > 0.05. 
We also ran Kruskal-Wallis tests on pairs of categorical and 
continuous variables and removed those which were signifi-
cantly correlated, as denoted by p values > 0.05.

To aid in the interpretation of our final list of 28 socio-
environmental drivers, we split them into four convenient 
categories—those related to heat stress (3 ‘Heat’ drivers), 
human pressure (9 ‘Human’), the hydrodynamic regime 
surrounding the reef (3 ‘Hydrodynamic’), and the physical 
properties of the reef itself, including the distribution of hab-
itat and geomorphology (13 ‘Habitat/physical’ drivers). For 
the sake of brevity, the derivation of the 28 drivers is detailed 
in Supplementary Material, along with an explanation of our 
assessment of multicollinearity. Using the 28 drivers, we 
aimed to predict our four ecosystem metrics (field measure-
ments of coral, fish, and fleshy macroalgae) when assembled 
into a regression-based modelling framework.

Random forest modelling of ecosystem metrics

Random forests are nonparametric models composed of 
many regression trees that are used to predict the value of a 
single response variable from multiple predictors (Breiman 

2001). These models are considered equal, if not superior, 
to competing classification and regression models, such as 
boosted regression trees and generalized linear modelling 
(De’ath and Fabricius 2000). The accuracy of random for-
est models does not suffer when they are presented with 
many predictor variables, as assembled by this study. We 
picked random forests over tree-boosting methods for two 
reasons. First, because random forests take advantage of 
bootstrapping to avoid overfitting and improve model stabil-
ity (Ishwaran and Lu 2019), whereas boosted trees are grown 
sequentially without resampling. Also, boosting requires 
fine-tuning of many different model parameters, which can 
be complicated for ecological data with small sample sizes. 
The second reason why we choose random forests is that 
they implicitly account for spatial autocorrelation within 
the predictor and response variables by bootstrapping. As 
further insurance against spatial autocorrelation, however, 
we used Moran’s I to test for spatial dependency of all four 
ecosystem metrics. We built our random forest models using 
R package ‘randomForestSRC’ (v. 2.14.0). Normalization 
is unnecessary for random forest modelling, and therefore, 
no prior transformations were performed on the socio-envi-
ronmental drivers.

Each model of the four ecosystem metrics was trained 
on a random split of 80% of the 650 field stations, while 
the remaining 20% were reserved for validation. Observed 
versus predicted values were plotted against a 1:1 identity 
line, and the mean squared prediction error (MSPE) was 
computed by

where O is the observed value from the field data and P is 
the value predicted by the random forest. MSPE is a com-
mon goodness-of-fit measure for regression models because 
it quantifies the model residuals where lower MSPE values 
represent lower predictive error.

One further output from the random forest models was 
the relative variable importance (VIMP), which was com-
puted via permutation of bootstrapped samples during for-
est building. Per-model VIMP lists were used to evaluate 
which combinations of the 28 socio-environmental drivers 
possessed predictive power over each of the four ecosystem 
metrics. A driver was deemed important for a given model 
if it accounted for > 50% of the relative VIMP. Following the 
lead of Pittman and Brown (2011), Harborne et al. (2018), 
Jouffray et al. (2019), and Smallhorn-West et al. (2020a), 
we considered the partial dependence plots (PDPs) for the 
socio-environmental drivers that exceeded the 50% VIMP 
threshold. The PDPs were used to visualize the marginal 
effect of drivers on random forest predictions for each eco-
system metric, and the PDP y-axis describes an averaged 
effect to the model predictions. We classified the effects for 

(3)MSPE = avg[Σ(O−P)2]
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continuous drivers as either positive (+), negative (−), or 
complex (C), with the latter defined as a blend of positive 
and negative relationships within the parameter space.

Modelling all 650 South Pacific stations showed the 
statistical relationship between diver-measured ecosystem 
metrics and remotely sensed socio-environmental drivers to 

Table 1   The 28 socio-environmental drivers used as independent 
variables for random forest modelling of coral, fish, and macroalgae, 
were grouped into the four H’s: Heat (n = 3), Human (n = 9), Hydro-

dynamic (n = 3), and Habitat/physical (n = 13). Details of drivers 
given in Supplementary Material

Driver description1: GDP gross domestic product
Data sources2: NOAA National Oceanic and Atmospheric Administration, NASA National Aeronautics and Space Administration, TNC The 
Nature Conservancy, WDPA World Database on Protected Areas, KSLOF Khaled bin Sultan Living Oceans Foundation, OSM OpenStreetMap, 
DEM Digital Elevation Model, MCRMP Millennium Coral Reef Mapping Project, WCMC World Conservation Monitoring Centre

Category Socio-environmental driver Description1 Scale, source2

Heat Max. degree heating weeks Maximum heat stress accumulated over time 5 km, NOAA
Mean sea surface temperature Average °C from time-series data 1 km, NASA
Max. sea surface temperature Maximum °C from time-series data 1 km, NASA

Human Dollar value Dollar value of reefs to tourism sector 1 km, TNC
Human population density Number of humans within 20 km 1 km, LandScan
Human pressure Number of humans per reef area within 20 km 1 km, LandScan
Marine protected area coverage Coverage by marine protected areas in each 

country
Country, WDPA

Market gravity Intensity of human impacts as a function of 
human population and reef accessibility

10 km, Cinner et al. (2018)

Protected status Protected area established, or not, at time of 
survey

Station, WDPA

Socioeconomic development First principal component from population, age, 
population growth, birth/death rate, urban popu-
lation, life expectancy, GDP, GDP growth rate, 
GDP per capita, and unemployment rate

Country, World Bank and 
World Factbook

Terrestrial protected area coverage Coverage by terrestrial protected areas in each 
country

Country, WDPA

Tourism Annual visitation to reef 1 km, TNC
Hydrodynamic Wind exposure Leeward, windward, or intermediate 25 km, KSLOF

Storms Frequency and intensity of storms passing by reef 
since 1980

11 km, NOAA

Max. wind-induced wave exposure Mechanical energy based on fetch, wind speed, 
and wind direction

25 km, NASA

Habitat/physical In situ bathymetry Average water depth of field station as measured 
by divers

Station, KSLOF

Distance to land Euclidean distance to nearest land 0.025 km, OSM
Distance to pass Euclidean distance to nearest pass 0.025 km, OSM
Lagoon Inside or outside lagoon Station, KSLOF
Land area Area of land within 20 km 0.25 km, OSM
Max. island elevation Highest point of island or atoll in metres Atoll, DEM
Millennium Coral Reef Mapping Project (L2) Reef geomorphology at Level 2 30 m, MCRMP
Millennium Coral Reef Mapping Project (L3) Reef geomorphology at Level 3 30 m, MCRMP
Millennium Coral Reef Mapping Project (L4) Reef geomorphology at Level 4 30 m, MCRMP
Mean net primary productivity Average net primary productivity modelled from 

photosynthetically available radiation, tempera-
ture, and chlorophyll a concentration

5 km, Yeager et al. (2017)

Max. net primary productivity Maximum net primary productivity modelled 
from photosynthetically available radiation, 
temperature, and chlorophyll a concentration

5 km, Yeager et al. (2017)

Reef area Area of reef within 20 km 30 m, WCMC
Reef extent Linear extent of continuous reef tract in kilome-

tres
30 m, WCMC
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be strongest for live coral cover. For this reason, rather than 
modelling all four ecosystem metrics, we concentrated on 
coral cover to examine model consistency across geomor-
phological zones and spatial scales. To do this, we created 
six new random forest models—two geomorphological mod-
els and four spatial scale models—using subsets of the full 
South Pacific dataset. The stations were split by reef zone 
(forereef or lagoon) to consider the effect of geomorphol-
ogy on model output. Then, for the scaling experiment, we 
partitioned the data into three granularities: ‘archipelago,’ 
‘region,’ and ‘basin.’ We isolated the Tuamotu Archipelago 
stations to run the archipelago-scale model. Small sample 
sizes prevented additional models from being run at this 
scale. Our intermediate granularity, meanwhile, was com-
prised of three models. All stations from the four archipela-
gos of French Polynesia were used in the first region-scale 
model. Second, we modelled stations from the Solomon 

Islands and New Caledonia together, and, lastly, the group 
of stations from Fiji, Tonga, and the Cook Islands. Our larg-
est scale of model deployment considered the entire Pacific 
scope of the study and was termed basin-scale.

Results

Reef health can be accurately predicted 
from open‑source remote sensing data

The field data from our 650 South Pacific diver stations 
(Fig. 2a) showed broad ranges of live coral cover, coral 
diversity, fish biomass, and fleshy macroalgae cover 
(Fig. 2b–e). The variability among our ecosystem metrics 
cannot be explained by spatial autocorrelation. Moran’s I 
statistics for coral cover, Simpson’s Diversity of coral, fish 

Fig. 2   Map a with the 650 KSLOF-GRE field stations in the South 
Pacific. Box plots depict the between-island variation of field meas-
urements for b live coral cover, c Simpson’s Diversity of coral genera, 

d reef fish biomass, and e fleshy macroalgae cover. Data for each sta-
tion were averaged over replicate transects at the five depth classes 
from a total of 4442 benthic transects and 4289 fish transects
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biomass, and fleshy macroalgae cover were 0.35, 0.24, 
0.20, and 0.22, respectively, suggesting that there was little 
autocorrelation and data dispersion was close to random (z 
scores with associated p values < 0.01).

Correlation plots of predicted versus observed values 
showed that the random forests made meaningful predic-
tions of all four ecosystem metrics (Fig. 3). The model for 
coral cover (MSPE = 0.35) performed the best, followed by 
coral diversity (MSPE = 0.38), then fleshy macroalgae cover 
(MSPE = 0.46), and finally fish biomass (MSPE = 0.48). All 
four models performed with high accuracy at certain ranges, 
however, especially for macroalgae and fish biomass, devi-
ated at the extremes of those ranges. Whereas the differ-
ence between observed and predicted values for live coral 
cover and coral diversity was generally constant across the 
full ranges of the models (Fig. 3a, b), values measured in 
the field of reef fish biomass < 102 kg ha−1 tended to be 
overpredicted by the random forest (Fig. 3c). For the low 

biomass points predicted in this model, Tuamotu (French 
Polynesia), an archipelago with highly variable fish biomass 
(Fig. 2d), was particularly affected. The model of fleshy 
macroalgae cover, by contrast, performed well in its lower 
range, but tended to underpredict cases of fleshy macroalgae 
cover > 10% (Fig. 3d).

Relationships exist between ecosystem metrics and their 
environment

For coral cover, seven socio-environmental drivers exceeded 
the threshold of 50% VIMP and were considered relevant 
predictors (Fig. 4a). Coral cover appeared particularly sen-
sitive to MPA coverage from the ‘Human’ category, such 
that higher coral cover was found in countries with larger 
MPAs (Fig. 5a). In the ‘Heat’ grouping, the important cor-
relates were degree heating weeks (DHW), and mean and 
maximum sea surface temperature (SST). The model showed 

Fig. 3   Correlation plots of 
random forest model predictions 
versus field-observed values for 
a coral cover, b coral diver-
sity, c reef fish biomass, and d 
fleshy macroalgae cover. Model 
performance was evaluated 
mean-squared prediction error 
(MSPE). Points colour-coded by 
country. Dashed grey lines rep-
resent a 1:1 fit, while solid black 
lines represent least square 
regressions of the relation-
ships. All models can predict 
the field-measured values with 
meaningful accuracy, though 
that for fish biomass tends to 
overpredict low values and that 
for macroalgae underpredicts 
high values
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coral cover decreasing with mean and maximum SST and 
DHW; then, coral cover increased at the upper range of SST 
values (Fig. 5b, c, e, respectively). Within the ‘Human’ 
category, market gravity and the socioeconomic develop-
ment score were also important in the model. Lower coral 
cover in our dataset was predicted by high socioeconomic 
development scores (Fig. 5d). Here, high scores were associ-
ated with high birth rates and GDP growth (Supplementary 
Fig. 2). High values for market gravity were correlated with 
low coral cover (Fig. 5f). From the ‘Habitat’ category, Mil-
lennium Coral Reef Mapping Project (MCRMP) Level 3 
driver exceeded the 50% VIMP threshold. Coral cover was 
particularly affected if the station was classified as ‘ocean 
exposed fringing,’ or the three MCRMP Level 3 classifica-
tions associated with atolls (‘atoll lagoon,’ ‘atoll patch,’ and 
‘atoll rim’; Fig. 5g). No ‘Hydrodynamic’ drivers exceeded 
the 50% VIMP criteria for modelling coral cover.

In the coral diversity model, MPA and terrestrial pro-
tected area (TPA) coverage in the ‘Human’ category and 
the lagoon driver from ‘Habitat’ were the three drivers that 
exceeded 50% VIMP (Fig. 4b). A minor increase in pro-
tected area coverage, both MPA and TPA, correlated with 
instances of higher coral diversity (Fig. 6a, b), and coral 
diversity was lower within lagoons than outside of them 
(Fig. 6c).

The seven drivers that surpassed the 50% VIMP thresh-
old for the model of fish biomass covered all four of our 
categories—a single driver represented each of the ‘Heat,’ 
‘Human,’ and ‘Hydrodynamic’ categories, which were 
DHW, human population density, and wave exposure, 
respectively (Fig. 4c). The remaining four drivers from 
the ‘Habitat’ category were land area, island elevation, 

reef extent, and MCRMP Level 2. Fish biomass exhibited 
a negative relationship with each of the first four continu-
ous drivers, so that biomass was predicted to be lowest with 
higher DHW, human population, land area, and wave energy 
(Fig. 7a–d). In the case of MCRMP Level 2, fish biomass 
was higher on reefs classified as ‘oceanic atolls’ and lower 
for the remaining classifications (Fig. 7e). Fish biomass was 
low around islands with high elevation and high on reefs 
with long linear extents (Fig. 7f, g).

Finally, only two socio-environmental drivers—MPA and 
TPA coverage—both within the ‘Human’ category exceeded 
the 50% VIMP threshold for our fleshy macroalgae model 
(Fig. 4d). The reefs situated in South Pacific countries with 
little to no MPA and TPA had higher fleshy macroalgae 
cover and algal cover steeply declined with even a small 
addition of protected area (Fig. 8a, b).

Coral cover can be accurately modelled 
across geomorphological zones and across scale

We applied random forests to model the cover of live coral 
for 400 forereef and 250 lagoonal stations (Fig. 9). The 
accuracy for these two models was not significantly differ-
ent to that achieved by modelling the entire Pacific-wide 
dataset, without splitting by reef geomorphology. The MSPE 
of the ‘forereef’ model was 0.37 and the ‘lagoonal’ model 
MSPE was 0.34, as compared to MSPE of 0.35 when all 
the data were considered as a single set. Despite consistent 
accuracy, the VIMP lists differed for the models created for 
the forereef stations versus those in the lagoon. The seven 
drivers with > 50% VIMP for the forereef model of coral 
cover (Fig. 9a) were mean SST and DHW from the ‘Heat’ 

Fig. 4   Heatmap of relative variable importance (VIMP) for the 28 
socio-environmental drivers for the models of a coral cover, b Simp-
son’s Diversity of coral genera, c reef fish biomass, and d fleshy 
macroalgae cover. Drivers are grouped as they pertain to the ‘Heat,’ 
‘Human,’ ‘Hydrodynamic,’ and ‘Habitat/physical’ properties of 
our diver stations. Black boxes identify drivers with > 50% relative 

VIMP, and their positive (+), negative (−), or complex (C) effects 
on the ecosystem metrics are denoted within these boxes. Drivers 
with > 50% relative VIMP for coral cover and reef fish biomass mod-
els are greater in number and span more socio-environmental catego-
ries than the other two ecosystem metric models
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Fig. 5   Partial dependence plots a through g for the seven socio-
environmental drivers with > 50% variable importance from the 
random forest model of coral cover. SST = sea surface temperature, 
DHW = degree heating weeks, and MCRMP = Millennium Coral 

Reef Mapping Project classifications. Tick marks on the x-axis show 
distribution of observations along the range of each driver. 95% confi-
dence intervals around the predicted effects depicted in grey

Fig. 6   Partial dependence 
plots a through c for the three 
socio-environmental drivers 
with > 50% variable importance 
from the random forest model 
of Simpson’s diversity of coral 
genera. MPA = marine protected 
area and TPA = terrestrial 
protected area. Tick marks on 
the x-axis show distribution of 
observations along the range 
of each driver. 95% confidence 
intervals around the predicted 
effects depicted in grey
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category, population density, MPA coverage, and market 
gravity from ‘Human,’ and distance to pass and MCRMP 
Level 3 from ‘Habitat.’ The only three drivers that exceeded 
our VIMP threshold for the lagoonal model, meanwhile, 
were MPA coverage, socioeconomic development, and dis-
tance to the nearest pass (Fig. 9b).

When modelling live coral cover across spatial scales, 
650 dive stations in the South Pacific represented the full 
basin-scale model, 144 stations in Solomon Islands and New 
Caledonia, 160 in Fiji, Tonga, and the Cook Islands, and 
259 in French Polynesia comprised our three region-scale 
models, and the final archipelago-scale included 103 stations 
situated in the French Polynesian archipelago of Tuamotu 
(Fig. 10a). Running the model for coral cover at these three 
granularities delivered prediction accuracies which, just as 
for the geomorphological splits, did not qualitatively vary 
(Fig. 10b). The MSPE was 0.31 for the archipelago-scale, 

and region-scale MSPE was 0.37, 0.38, and 0.30, respec-
tively, from west to east, compared to MSPE of 0.35 from 
the full basin-scale model.

Whereas model error was stable across scale, the VIMP 
lists varied between the three granularities (Fig.  10c). 
The > 50% VIMP list for the archipelago-scale model was 
composed of four drivers—DHW from ‘Heat,’ wind expo-
sure from ‘Hydrodynamic,’ and MCRMP Level 3 and Level 
4 from the ‘Habitat/physical’ category. The archipelago-
scale model was the only example without an important 
‘Human’ driver.

The three region-scale models resulted in different sets 
of important drivers. Those for modelling Solomon Islands 
and New Caledonia were all three ‘Heat’ variables, human 
pressure and storms from the ‘Human’ and ‘Hydrodynamic’ 
categories, and island elevation and the MCRMP Level 4 
classification from ‘Habitat/physical.’ This was the only 

Fig. 7   Partial dependence plots a through g for the seven socio-
environmental drivers with > 50% variable importance from the ran-
dom forest model of reef fish biomass. DHW = degree heating weeks, 
MCRMP = Millennium Coral Reef Mapping Project classifications. 

Tick marks on the x-axis show distribution of observations along the 
range of each driver. 95% confidence intervals around the predicted 
effects depicted in grey
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region-scale model without market gravity as an important 
driver. The model of coral cover in French Polynesia resulted 
in the shortest VIMP list. Those four drivers were almost the 
same as those for the basin-scale scale, the only difference 
being the exclusion of max SST, DHW, and socioeconomic 
development. Both the French Polynesia and basin-scale 
models did not have any ‘Hydrodynamic’ drivers. Mean 
net primary productivity and MCRMP Level 3 were two 
additional important drivers in French Polynesia. Modelling 
across Fiji, Tonga, and the Cook Islands produced six driv-
ers above the 50% VIMP threshold. These were DHW from 

‘Heat,’ market gravity from ‘Human,’ two ‘Hydrodynamic’ 
drivers wind exposure and storm impact, and island eleva-
tion and reef extent from the ‘Habitat/physical’ category. 
This was the only model without an important MCRMP 
driver.

Discussion

Understanding which satellite-derived variables can predict 
different ecosystem metrics is an important step towards 
modelling reef health from orbit. To meet this objective, the 
KSLOF-GRE generated an unprecedented dataset of stand-
ardized in situ measurements for four metrics of reef con-
dition—coral cover and diversity, fish biomass, and fleshy 
macroalgae cover. We discovered that each of these metrics 
could be effectively modelled across the South Pacific with 
remote sensing products that are already globally available. 
This key result suggests that large-scale extrapolation of 
field data is feasible for reef health indicators to support 
assessment and management across entire seascapes.

All the models were similarly effective. Protected area 
coverage, market gravity, geomorphological classifications, 
and temperature were among the key drivers for all four 
ecosystem metrics, though the best combinations of driv-
ers varied between each model. Most notably, there were 
very few drivers (2–3) with high variable importances 
(VIMPs) for the models of coral diversity and macroalgae, 
as compared to the other two models, which each had seven 
important drivers. Though this suggests that fewer remotely 
sensed variables are needed to model coral diversity and 
macroalgal cover, it also potentially reflects the fact that the 
variables that we included were mostly guided by studies for 
coral cover and fish biomass, since few examples exist for 
modelling coral diversity and even less so for macroalgae. 

Fig. 8   Partial dependence plots a through b for the two socio-envi-
ronmental drivers with > 50% variable importance from the random 
forest model of fleshy macroalgae cover. MPA = marine protected 
area and TPA = terrestrial protected area. Tick marks on the x-axis 
show the distribution of observations along the range of each driver. 
95% confidence intervals around the predicted effects depicted in grey

Fig. 9   Random forest models of live coral cover were deployed for 
stations a on the forereef (n = 400) and b inside the lagoons (n = 250). 
Drivers with > 50% VIMP denoted by black boxes, and the form of 
their predictive effect on coral cover were signified as positive ‘+,’ 

negative ‘−,’ and complex ‘C.’ The coral cover model for the forer-
eef resulted in seven drivers with > 50% VIMP, whereas the lagoon 
model resulted in only three important drivers
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For instance, one of the few successful algal studies relied 
on sediment characteristics in the Baltic Sea (Kotta et al. 
2013) and another study gathered detailed morphometric 
data (slope, rugosity, etc.) to model coral diversity in Puerto 
Rico (Pittman et al. 2009). Although those studies carry 
important lessons for our macroalgae and coral diversity 
models, these predictors do not exist for our study sites, nor 
would their use have been consistent with our aim to solely 
use open-source, globally available remote sensing data.

We acknowledge that our drivers are by no means an 
exhaustive list of all the important determinants of reef 
health. Nonetheless, we show that several drivers have pre-
dictive power over the considered ecosystem metrics. First, 
we inferred that establishing protected areas, regardless of 
size, conveyed a measurable positive effect on the ecosys-
tem—coral cover and diversity was higher and macroalgal 
cover lower because of management goals, such as protect-
ing grazing fish populations within MPAs (Mumby et al. 
2007; Lester et al. 2009; McCook et al. 2010) and reducing 
land-based runoff from TPAs (Klein et al. 2012; Brown et al. 

2017). Like Harborne et al. (2018), who considered fish, 
our models did not identify the simple presence/absence of 
protection at a station to be an important driver. Instead, we 
found per-country MPA and TPA cover to be relevant, sug-
gesting that being positioned inside of a protected area is not 
as important as belonging to a country that prioritizes creat-
ing them, even if the protected areas are small. It is easier for 
local communities to enforce small MPAs, therefore increas-
ing their success (Aswani and Hamilton 2004). Furthermore, 
well-managed MPAs are known for their ‘spillover’ effect, 
in which the benefits extend beyond the physical boundaries 
of the MPA (Di Lorenzo et al. 2020; Lenihan et al. 2021).

Other important drivers in our models were market grav-
ity and human population density, which have been shown 
to proxy fishing pressure and other stressors (Stallings 2009; 
Brewer et al. 2012; Cinner et al. 2013, 2018; Williams et al. 
2015b; Ford et al. 2020). In our dataset, coral cover and 
fish biomass exponentially declined with increasing market 
gravity and human density, supporting conventional wis-
dom that human pressures deteriorate reef condition from 

Fig. 10   Random forest models of live coral cover were deployed 
at three granularities a: basin scale (entirety of Pacific KSLOF-
GRE stations), region scale (Solomon Islands and New Caledo-
nia [n = 144], Fiji, Tonga, and Cook Islands [n = 160], and French 
Polynesia [n = 259]), and archipelago scale (Tuamotu Archipelago 
[n = 103]). The three granularities are coloured blue, green, and pur-
ple, respectively, from largest to smallest. Model performance across 
these three scales b was evaluated by mean-squared prediction error 

(MSPE). Driver variable importance (VIMP) was organized on the 
c heatmap, where drivers with > 50% VIMP were denoted via black 
boxes, and the form of their predictive effect on coral cover was sig-
nified as positive ‘+,’ negative ‘−,’ and complex ‘C.’ The predictive 
power of the random forests was virtually unchanged between model 
scales, while drivers that exceeded the VIMP threshold changed con-
siderably
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activities ranging from fishing to coastal development. 
Human population density, rather than market gravity, was 
a better predictor of fish biomass in our models, contrary to 
the pattern Cinner et al. (2018) reported. Upon closer exami-
nation of the market gravity variable, this may be because 
gravity values in the Pacific do not have enough inter-station 
variability (they are typically low across the region) for our 
models to converge on any meaningful relationships. This 
highlights the idea that variables were not always excluded 
by the random forests because they were unimportant, but 
instead because of an incongruency between model scale 
or setting, and the range of values for that variable. It is 
also important to note the caveat that Heenan et al. (2016) 
highlighted for market gravity in the Pacific. The authors 
identified cases where market gravity did not describe fish-
ing pressure because fish were being sold informally, and 
that some fisheries were dominated by shore-based rather 
than boat-based fishing.

We also note that the MCRMP classifications (André-
fouët et al. 2006) emerged as important drivers, implying 
that ecosystem metrics stratify by reef geomorphology 
locally, regionally, and across the Pacific. In particular, the 
finer-resolution geomorphological classification (MCRMP 
Level 4) was important in our smallest archipelago-scale 
coral model, where coral cover was lowest in MCRMP 
classes ‘atoll lagoon’ and ‘ocean exposed fringing,’ as also 
observed by Riegl et al. (2012). Meanwhile, the broadest 
MCRMP geomorphology classification (Level 2) indicated 
high importance for the basin-scale model of fish, where bio-
mass was highest in atolls, possibly because this MCRMP 
class coincided with reefs farther away from human popula-
tions. The atolls considered by our study also tended to have 
low island elevations, which are shown to have high fish 
abundances, possibly due to the opportunity for a greater 
number of habitats to develop in the large lagoons that atolls 
without high islands yield (Heenan et al. 2016; Ford et al. 
2020). Harborne et al. (2018) also found geomorphology to 
be among the top predictors of fish biomass in Micronesia. 
Recent reef ecosystem models have not considered fine-scale 
geomorphology and instead use broad map classes (Wil-
liams et al. 2015b; Cinner et al. 2018; Ford et al. 2020). Ours 
is one of the first studies to include detailed geomorphologic 
classes when predicting reef health, through multiple layers 
of MCRMP data, and highlights the benefit of including 
geomorphology when modelling ecosystem metrics.

Thousands of studies have documented that increasing 
temperature kills corals through bleaching, and indeed this 
underpins the global reef crisis (Veron et al. 2009b; Hughes 
et al. 2018a). In our dataset, the relationship between SST 
and coral cover did not initially appear to adhere to this pat-
tern; coral cover declined with increasing temperature, as 
would be anticipated, until an average SST of 28 °C and 
maximum SST of 30 °C, at which point coral cover rapidly 

increased with increasing temperature. Careful examina-
tion of these relationships reveals, however, that it was con-
structed from two clusters of data from two different tem-
perature and biodiversity regimes. Palau and the Solomon 
Islands are both situated about 8° N and S from the equator, 
where they experience high SSTs (> 29 °C) and belong to 
the Coral Triangle, a biodiversity hotspot, harbouring higher 
coral cover relative to other regions (Veron et al. 2009a). 
Considering Palau and the Solomon Islands in isolation, 
both clusters of field stations displayed the anticipated rela-
tionship of decreasing coral cover with increasing tempera-
ture, and the overall relationship therefore is consistent with 
hotter temperatures leading to coral mortality. Work by Wil-
liams et al. (2015a) emphasizes that this relationship should 
not be assumed. Counterintuitively, for unpopulated islands 
in the Pacific, the authors found temperature and coral cover 
to be positively correlated, for instance. Populated islands, 
however, showed no significant relationship, consistent 
with the notion presented by Ford et al. (2020) that human 
impacts can disrupt well-established relationships between 
coral cover and the environment.

Similarly counterintuitive was the positive relationship 
in our dataset between coral cover and DHW—a measure 
of accumulated heat stress—until about 8 °C-weeks, when 
coral cover began to decline. Eakin et al. (2010) and Liu 
et al. (2014), who produced the DHW product, identified 
8 °C-weeks to be the tipping point at which corals experi-
ence mass mortality, and our results support that designa-
tion. DHW also appeared as the top driver of fish biomass. 
Although a direct relationship between DHW and fish has 
not yet been described (but see Stuart-Smith et al. 2018), 
increasing DHW causes a decline in coral cover and, indi-
rectly, a decline in fish biomass (Jones et al. 2004; Russ 
et al. 2021).

Predicting coral cover across geomorphological zones and 
spatial scales indicated that a variation in important drivers 
not only existed between metrics, but also between lagoonal 
reefs and forereefs, and over changing spatial scales. It 
might not have been expected that a one-size-fits-all model 
would exist for reef condition, given that reef assemblages 
along geomorphologic zones are generally distinct from one 
another (Williams et al. 2013; Edmunds and Leichter 2016; 
Adjeroud et al. 2019; Moustaka et al. 2019) and because 
large-scale gradients are expected to become less important 
in small-scale models (Brown et al. 2013). However, the 
extent of this difference has rarely been quantified and there-
fore clear guidance to conservation practitioners is lacking.

Coral cover on the forereef was influenced by a greater 
number of drivers (7) than cover in lagoons, which was only 
correlated with three drivers operating on local scales (the 
per-country socioeconomic development score and MPA 
coverage, and distance to the nearest reef pass). The physi-
cal restriction of atoll lagoons naturally predisposes them 
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to hotter, less oxygenated, and more acidic waters (McCabe 
et al. 2010; Camp et al. 2017), which have been shown to 
promote resilient reefs built by less diverse coral assem-
blages than those on forereefs (Adjeroud et al. 2000). Addi-
tionally, our distance to pass driver was designed to proxy 
the degree of connectivity between the open ocean and the 
lagoon. As such, it is not surprising that this driver is impor-
tant in the prediction of coral diversity, since, when connec-
tivity is high, nutrients from the lagoon can be distributed 
to the forereef, thereby promoting diversity (Williams et al. 
2018). Our models reflect these characteristics. In the full 
model, inside versus outside the lagoon was a top driver of 
coral diversity, and neither of the important drivers for the 
model of lagoonal coral cover were related to anthropogenic 
or environmental stress. In fact, this was the sole coral cover 
model without a ‘Heat’ driver from our entire study, includ-
ing the five models across spatial scales.

Though temperature was a key correlate in all our mul-
tiscale coral cover models, the remaining drivers varied in 
importance across all scales. Our region-scale model, for 
instance, which encompassed field observations from Fiji, 
Tonga, and the Cook Islands, was the only model lacking 
one of the MCRMP drivers. In this case, however, the ran-
dom forest substituted MCRMP with the reef extent driver, 
which is an accepted proxy of geomorphology (Andréfouët 
et al. 2006; Li et al. 2020). The finest resolution MCRMP 
classification (Level 4) was important at the archipelago- 
and smaller region-scale model of the Solomon Islands and 
New Caledonia, while the intermediate MCRMP (Level 3) 
was important at all scales. MPA coverage and socioeco-
nomic development were only important predictors of coral 
cover in our basin-scale model, likely explained by the fact 
that this pair of drivers is represented by a single value per 
country. Their lack of inter-country variation masks any 
locally driven relationships to coral cover. Also absent in 
our archipelago-scale model were any important drivers 
from the ‘Human’ category. Although human activity (e.g., 
coastal development, tourism, fishing) may not be affecting 
the Tuamotu Archipelago in the same way as it affects coral 
cover at region-to-basin scales, anthropogenic disturbance 
has subjected these atolls to drastic shoreline changes that 
disturb surrounding reefs (Duvat et al. 2017). Our results 
confirm that the random forests are responding to gradients 
of scale within the drivers. Hence, even when modelling 
a single ecosystem metric, the drivers in the random for-
est change depending on whether the model is run at local 
versus large scale.

The change in the form of our models across geomorpho-
logical zones and spatial scales implies that care must be 
taken when extrapolating field data to larger scales. In gen-
eral, we show that such extrapolation is reasonable within a 
country and within reef zones, or across reef zones if field 
data are available for each and zone is included as a driver 

(e.g. forereef and lagoonal reef). However, extrapolating 
between countries or regions without additional field data 
may be problematic and emphasizes the need to spatially 
stratify in situ surveys across the area of interest. Similarly, 
we cannot necessarily conclude that the models we built will 
translate to other locations, or across other socio-environ-
mental gradients that we have not considered in this study, 
even if the reefs are relatively similar. This prediction could 
be tested, though, by using our models to extrapolate to new 
sites and comparing the prediction accuracy to real-world 
observations.

We consider our work to be prescient regarding the recent 
momentum behind the global-scale appraisal of reefs from 
satellite, such as the KSLOF-GRE (Purkis et al. 2019), the 
Allen Coral Atlas (Lyons et al. 2020; Roelfsema et al. 2020, 
2021), as well as recent technological advances from NASA 
which apply fluid lensing to image reefs at millimetre reso-
lution (Chirayath and Earle 2016; Chirayath and Instrella 
2019; Chirayath and Li 2019). These new high-resolution 
maps will give us the opportunity to assemble drivers that 
had to be omitted from our models. One such example is 
rugosity, a known correlate of reef fish abundance and diver-
sity (Purkis et al. 2008; Pittman and Brown 2011; Darling 
et al.2017; Foo et al. 2021; Asner et al. 2021). These new 
mapping initiatives will provide rugosity, along with other 
drivers, and should therefore improve the prediction of reef 
fish and potentially other ecosystem metrics, too.

Our study is a prelude to producing global-scale maps 
of ecosystem metrics from remote sensing. Since the four 
metrics that we modelled are commonly used in the field 
to quantify reef health, they might be similarly combined 
in map form to build towards a global reef health product. 
Managers could use such a map to direct conservation inter-
ventions aimed at restoring coral cover and fish biomass (tar-
geting areas with low cover and biomass), protecting areas 
with high coral cover and fish biomass, increasing the diver-
sity of coral, and controlling macroalgal growth (addressing 
key influences such as low grazing fish biomass or improv-
ing water quality). A temporal sequence of such maps would 
also function as an important tool for long-term monitoring 
reef health and the efficacy of management interventions. 
We hope that our study will lead to these types of improved 
management outcomes and evidence-based marine spatial 
planning, including more effective multinational marine 
reserves.
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