search-icon
Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

Background: The rising temperature of the world’s oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin.

Methodology/Principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers’ field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles.

Conclusions/Significance: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch’s Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.


INTRODUCTION

Coral bleaching has become a major threat to coral reef ecosystems worldwide [1]. Bleaching occurs when stress to the coral-algal symbiosis causes corals to expel their endosymbiotic algae (zooxanthellae) and, if prolonged or particularly severe, may result in partial or complete coral mortality [2]. While many sources of stress have caused corals to bleach, ‘‘mass’’ coral bleaching (at scales of 100 km or more) has only occurred when anomalously warm ocean temperatures, typically coupled with high subsurface light levels, exceeded corals’ physiological tolerances. This was observed during recent major El Nin˜o-Southern Oscillation events (e.g., 1982–83 [3], 1997–98 [4], and 2002 [5]) and verified by laboratory experiments [6,7]. These bleaching events caused coral death at numerous sites around the world, with impacts on reef habitats, structures, and biodiversity that lasted a decade or more [8,9].

From June to October 2005, a warm-water anomaly developed across the tropical Atlantic Ocean and greater Caribbean Sea region. Satellite-based sea surface temperature (SST) observations from the U.S. National Oceanic and Atmospheric Administration (NOAA) [10] detected a large region of warming ocean temperatures that reached a maximum anomaly of +1.2uC vs. the long-term mean when averaged across all Caribbean reef sites. Elevated temperatures persisted for many weeks and helped fuel the most active Atlantic hurricane season on record [11] and the most severe and extensive mass coral bleaching event observed in the Caribbean.

 

Related Posts

Introducing Our New Website: A Fresh Look for the Foundation’s Future

As we celebrate the Khaled bin Sultan Living Oceans Foundation’s 25th anniversary, we are proud to unveil our newly redesigned website—a modern home for our science, conservation work, and educational programs. This launch marks an important moment for the Foundation as we honor our long history and look toward the future of ocean conservation.

For more than two decades, the Foundation has worked tirelessly to improve the health of our living oceans. We have advanced ocean science, led one of the largest coral reef research missions in history, restored mangrove forests with local communities, created award-winning education programs, and shared the wonders of the ocean with people around the world. Our new website reflects the organization we are today—focused on conserving coral reefs, restoring mangrove forests, and improving ocean literacy—while still highlighting the legacy of work that brought us here.

The redesigned site…

Read More

Connecting People, Art, and Oceans: Championing Conservation at the 2025 IUCN Congress

The IUCN World Conservation Congress brings together thousands of leaders and decision-makers from governments, non-profit organizations, civil society, Indigenous groups, and the private sector to shape global conservation policy and action. This influential gathering serves as a platform to share knowledge, build partnerships, and advance initiatives that protect our planet’s biodiversity.

As a member of the International Union for Conservation of Nature (IUCN), the Khaled bin Sultan Living Oceans Foundation was honored to take part in the Congress, joining a global community of leaders, organizations, and changemakers committed to protecting nature and advancing sustainable futures.

Read More
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.  You can view our complete Privacy Policy here.

Strictly Necessary Cookies

Most of our cookies are used to improve website security and reduce spam. These cookies should be enabled at all times. They also enable us to save your preferences for cookie settings.

3rd Party Cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages. Keeping this cookie enabled helps us to improve our website.